Trong không gian với hệ toạ độ Oxyz, cho đường thẳng \(\Delta \) là giao tuyến của hai mặt phẳng \(\left( P \right):z - 1 = 0\) và \(\left( Q \right):x + y + z - 3 = 0\). Gọi d là đường thẳng nằm trong mặt phẳng (P), cắt đường thẳng \(\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{{ - 1}}\) và vuông góc với đường thẳng \(\Delta \). Phương trình của đường thẳng d là
A.
\(\left\{ \begin{array}{l}
x = 3 + t\\
y = t\\
z = 1 + t
\end{array} \right.\)
B.
\(\left\{ \begin{array}{l}
x = 3 - t\\
y = t\\
z = 1
\end{array} \right.\)
C.
\(\left\{ \begin{array}{l}
x = 3 + t\\
y = t\\
z = 1
\end{array} \right.\)
D.
\(\left\{ \begin{array}{l}
x = 3 + t\\
y = - t\\
z = 1 + t
\end{array} \right.\)
Lời giải của giáo viên
Đặt \({{\vec{n}}_{P}}=\left( 0;0;1 \right)\) và \({{\vec{n}}_{Q}}=\left( 1;1;1 \right)\) lần lượt là véctơ pháp tuyến của \(\left( P \right)\) và \(\left( Q \right)\).
Do \(\Delta =\left( P \right)\cap \left( Q \right)\) nên \(\Delta \) có một véctơ chỉ phương \({{\vec{u}}_{\Delta }}=\left[ {{{\vec{n}}}_{P}},{{{\vec{n}}}_{Q}} \right]=\left( -1;1;0 \right)\).
Đường thẳng d nằm trong \(\left( P \right)\) và \(d\bot \Delta \) nên d có một véctơ chỉ phương là \({{\vec{u}}_{d}}=\left[ {{{\vec{n}}}_{P}},{{{{u}'}}_{\Delta }} \right] =\left( -1;-1;0 \right)\).
Gọi \({d}':\frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-3}{-1}\) và \(A={d}'\cap d\Rightarrow A={d}'\cap \left( P \right)\)
Xét hệ phương trình \(\left\{ \begin{array}{l} z - 1 = 0\\ \frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{{ - 1}} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} z = 1\\ y = 0\\ x = 3 \end{array} \right. \Rightarrow A\left( {3;0;1} \right)\).
Do đó phương trình đường thẳng \(d:\left\{ \begin{array}{l} x = 3 + t\\ y = t\\ z = 1 \end{array} \right.\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \frac{{2x - 1}}{{x + 1}}\). Mệnh đề nào dưới đây là đúng.
Cho khối chóp S.ABC có \(SA\,\bot \,\,\left( ABC \right)\), tam giác ABC vuông tại B, \(AC=\,2a, BC=a,SB=2a\sqrt{3}\). Tính góc giữa SA và mặt phẳng \(\,\left( SBC \right)\).
Điểm nào trong hình vẽ bên là điểm biểu diễn của số phức \(z = - 1 + 2i?\)
Cho khối chóp có diện tích đáy bằng 6cm2 và có chiều cao là 2cm. Thể tích của khối chóp đó là:
Cho số phức z = a + bi ( với \(a,b \in R\)) thỏa \(\left| z \right|\left( {2 + i} \right) = z - 1 + i\left( {2z + 3} \right)\). Tính S = a + b.
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình tham số của đường thẳng đi qua hai điểm A(1;0;1) và B(3;2;-1).
Họ nguyên hàm của hàm số \(f\left( x \right) = {x^2}\) là
Tổng lập phương các nghiệm thực của phương trình \({3^{{x^2} - 4x + 5}} = 9\) là
Cho \(\int\limits_0^1 {\left[ {f\left( x \right) - 2g\left( x \right)} \right]{\rm{d}}x} = 12\) và \(\int\limits_0^1 {g\left( x \right){\rm{d}}x} = 5\), khi đó \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} \) bằng
Cho số phức \({{z}_{1}}=3+2i\), \(\,{{z}_{2}}=6+5i\). Tìm số phức liên hợp của số phức \(z=6{{z}_{1}}+5{{z}_{2}}\)
Trong không gian với trục hệ tọa độ Oxyz, cho \(\overrightarrow{a}=-\overrightarrow{i}+2\overrightarrow{j}-3\overrightarrow{k}.\) Tọa độ của vectơ \(\overrightarrow{a}\) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} + 4x - 2y - 4 = 0\).Tính bán kính R của (S).
Đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2x - 4}}{{x + 2}}\) là
Cho hàm số y = f(x) có đồ thị
Hàm số đã cho đạt cực đại tại