Câu hỏi Đáp án 2 năm trước 23

Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\left( {a \ne 0} \right)\) có đồ thị như hình bên dưới.

A. Hàm số \(y = a{x^3} + b{x^2} + cx + d\) có hai điểm cực trị trái dấu.

Đáp án chính xác ✅

B. Đồ thị hàm số \(y = a{x^3} + b{x^2} + cx + d\) cắt trục tung tại điểm có tung độ dương.

C. Đồ thị hàm số \(y = a{x^3} + b{x^2} + cx + d\) có hai điểm cực trị nằm bên phải trục tung.

D. Tâm dối xứng của đồ thị hàm số \(y = a{x^3} + b{x^2} + cx + d\) nằm bên trái trục tung.

Lời giải của giáo viên

verified HocOn247.com

Ta có: \(y' = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}.\) 

Dựa vào đồ thị hàm số ta thấy đồ thị hàm số có đường tiệm cận đứng nằm phía bên trái của trục \(Oy \Rightarrow x =  - \frac{d}{c} < 0 \Rightarrow dc > 0.\) 

Đường tiệm cận ngang của đồ thị hàm số nằm phía dưới trục \(Ox \Rightarrow y = \frac{a}{c} < 0 \Leftrightarrow ac < 0 \Rightarrow ad < 0.\) 

Ta thấy hàm số nghịch biến trên từng khoảng xác định \( \Rightarrow y' = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}} < 0 \Leftrightarrow ad - bc < 0 \Leftrightarrow ad < bc.\) 

Lại có đồ thị hàm số cắt Oy tại điểm có tung độ \({y_0} > 0 \Rightarrow \frac{b}{d} > 0 \Leftrightarrow bd > 0.\) 

Xét hàm số: \(y = a{x^3} + b{x^2} + cx + d \Rightarrow y' = 3a{x^2} + 2bx + c.\) 

\( \Rightarrow y' = 0 \Leftrightarrow 3a{x^2} + 2bx + c = 0(*)\) 

Ta có \(ac < 0 \Rightarrow (*)\) có hai nghiệm phân biệt trái dấu.

Suy ra đồ thị hàm số có hai điểm cực trị trái dấu.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho tích phân \(\int\limits_1^2 {\frac{{\ln x}}{{{x^2}}}dx}  = \frac{b}{c} + a\ln 2\) với a là số thực, b và c là các số nguyên dương, đồng thời \(\frac{b}{c}\) là phân số tối giản. Tính giá trị của biểu thức \(P = 2a + 3b + c\) 

Xem lời giải » 2 năm trước 29
Câu 2: Trắc nghiệm

Cho đa thức \(f\left( x \right) = {\left( {1 + 3x} \right)^n} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_n}{x^n}\left( {n \in {N^*}} \right).\) Tìm hệ số \(a^3\) biết rằng \({a_1} + 2{a_2} + ... + n{a_n} = 49152n.\) 

Xem lời giải » 2 năm trước 29
Câu 3: Trắc nghiệm

Tìm họ nguyên hàm của hàm số \(y = {x^2} - {3^x} + \frac{1}{x}.\) 

Xem lời giải » 2 năm trước 28
Câu 4: Trắc nghiệm

Tìm hệ số góc của tiếp tuyến của đồ thị hàm số \(y = \frac{{3 - 4x}}{{x - 2}}\) tại điểm có tung độ \(y =  - \frac{7}{3}\) 

Xem lời giải » 2 năm trước 27
Câu 5: Trắc nghiệm

Tính giới hạn \(L = \lim \frac{{{n^3} - 2n}}{{3{n^2} + n - 2}}.\) 

Xem lời giải » 2 năm trước 27
Câu 6: Trắc nghiệm

Cho hình lăng trụ tam giác đều ABC.A'B'C' có \(AB = 2a,AA' = a\sqrt 3 .\) Tính thể tích V của khối lăng trụ ABC.A'B'C' theo a?

Xem lời giải » 2 năm trước 26
Câu 7: Trắc nghiệm

Cho hàm số \(y = \frac{1}{3}{x^3} - 2m{x^2} + \left( {m - 1} \right)x + 2{m^2} + 1\) (m là tham số). Xác định khoảng cách lớn nhất từ gốc tọa độ O(0;0) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số trên.

Xem lời giải » 2 năm trước 26
Câu 8: Trắc nghiệm

Gieo đồng thời hai con súc sắc cân đối và đồng chất. Tính xác suất P để hiệu số chấm trên các mặt xuất hiện của hai con súc sắc bằng 2.

Xem lời giải » 2 năm trước 26
Câu 9: Trắc nghiệm

Cho chiếc trống như hình vẽ, có đường sinh là nửa elip được cắt bởi trục lớn với độ dài trục lơn bằng 80cm, độ dài trục bé bằng 60cm. Tính thể tích V của trống (kết quả làm tròn đến hàng đơn vị)  

Xem lời giải » 2 năm trước 26
Câu 10: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như bên dưới. Mệnh đề nào dưới đây Sai?

Xem lời giải » 2 năm trước 26
Câu 11: Trắc nghiệm

Tính diện tích S của hình phẳng (H) giới hạn bởi các đường cong \(y =  - {x^3} + 12x\) và \(y =  - {x^2}\) 

Xem lời giải » 2 năm trước 26
Câu 12: Trắc nghiệm

Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a, \(AA' = \frac{{3a}}{2}.\) Biết rằng hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) là trung điểm của cạnh BC. Tính thể tích V của khối lăng

trụ đó theo a.

Xem lời giải » 2 năm trước 26
Câu 13: Trắc nghiệm

Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng d cắt hai trục Ox và Oy lần lượt tại 2 điểm A(a;0) và \(B\left( {0;b} \right)\left( {a \ne 0,b \ne 0} \right).\) Viết phương trình đường thẳng d.

Xem lời giải » 2 năm trước 26
Câu 14: Trắc nghiệm

Tìm giá trị thực của tham số m để hàm số \(y = {x^3} - 3{x^2} + mx\) đạt cực đại tại x = 0 

Xem lời giải » 2 năm trước 26
Câu 15: Trắc nghiệm

Tìm nghiệmcuủa phương trình \({\sin ^4}x - {\cos ^4}x = 0.\) 

Xem lời giải » 2 năm trước 26

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »