Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
rong không gian với hệ toạ độ Oxyz Cho tam giác ABC với \(A\left( {1;2;1} \right);B\left( { - 3;0;3} \right);C\left( {2;4; - 1} \right)\) . Tìm toạ độ điểm D sao cho tứ giác ABCD là hình bình hành ?
Cho hàm số y = f(x) lien tục trên R thoả mãn \(f'(x) + 2x.f(x) = {e^{ - {x^2}}}\forall x \in R\) và f(0) = 0. Tính f(1)
Cho hàm số y = f(x) có đạo hàm trên R và có đồ thị hàm số y =f’(x) như hình bên. Hàm số y = f(3 – x) đồng biến trên khoảng nào dưới đây?
Tìm tập nghiệm S của phương trình \({9^{{x^2} - 3x + 2}} = )
Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên:
Khẳng định nào sai?
Trong không gian với hệ toạ độ Oxyz cho hai vectơ \(\overrightarrow a ( - 2; - 3;1)\) và \(\overrightarrow b (1;0;1)\).Tính \(\cos (\overrightarrow a ;\overrightarrow b )\)
Tính đạo hàm của hàm số \(y = \frac{{x + 1}}{{\ln x}}(x > 0,x \ne 1)\)
Cho khối chóp tam giác đều SABCD có cạnh đáy là a, các mặt bên tạo với đáy một góc 600. Tính thể tích khối chóp đó
Tìm họ nguyên hàm của hàm số \(f(x) = \cos x - 2x.\)
Cho bất phương trình \(m{.9^{2{x^2} - x}} - (2m + 1){6^{2{x^2} - x}} + m{a^{2{x^2} - x}} \le 0\) . Tìm m để bất phương trinh nghiệm đúng \(\forall x \ge \frac{1}{2}\)
Gọi K là tập nghiệm của bất phương trình \({7^{2x + \sqrt {x + 1} }} - {7^{2 + \sqrt { + 1} }} + 2018x \le 2018\). Biết rẳng tập hợp tất cả các giá trị của tham số m sao cho hàm số \(y = 2{x^3} - 3(m + 2){x^2} + 6(2m + 3)x - 3m + 5\) đồng biến trên K là với a, b là các số thực. Tính S = a + b
Tính tổng tất cả các giá trị của m biết đồ thị hàm số \(y = {x^3} - 2m{x^2} + (m + 3)x + 4\) và đường thẳng y = x + 4 cắt nhau tại 3 điểm phân biệt A(0;4), B, C sao cho diện tích tam giác IBC bằng \(8\sqrt 2 \) với I(1; 3)
Cho hàm số f(x) thoả mãn \(f'(x) = (x + 1){e^x}\) và f(0) = 1 . Tính f(2)
Tìm tất cả các giá trị thực của tham số m để hàm số \(y = {x^3} - 3{x^2} + mx + 2\) đồng biến trên R.
Trong không gian Oxyz, cho tam giác ABC với \(A\left( {1;2;0} \right);{\rm{ }}B\left( {3;2; - 1} \right);{\rm{ }}C\left( { - 1; - 4;4} \right)\) . Tính tập hợp tất cả các điểm M sao cho \(M{A^2} + M{B^2} + M{C^2} = 52\)