Câu hỏi Đáp án 2 năm trước 30

Cho hàm số y = f(x) có đồ thị như hình bên. Hàm số y = -2f(x) đồng biến trên khoảng

A. (1;2)

Đáp án chính xác ✅

B. (2;3)

C. (-1;0)

D. (-1;1)

Lời giải của giáo viên

verified HocOn247.com

Dựa vào đồ thị hàm số ta có hàm số  y = f(x) đồng biến trên các khoảng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % GHsislcqGHEisPcaGG7aGaaGimaaGaayjkaiaawMcaaaaa!3B54! \left( { - \infty ;0} \right)\) và  \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIYaGaai4oaiabgUcaRiabg6HiLcGaayjkaiaawMcaaaaa!3B4B! \left( {2; + \infty } \right)\)

Hàm số y = f(x) nghịch biến trên (0;2)

Xét hàm số: y = -2f(x) ta có:  y' = -2f'(x)

Hàm số đồng biến  \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaey % OeI0IaaGOmaiaadAgacaGGNaWaaeWaaeaacaWG4baacaGLOaGaayzk % aaGaeyyzImRaaGimaiabgsDiBlaadAgacaGGNaWaaeWaaeaacaWG4b % aacaGLOaGaayzkaaGaeyizImQaaGimaiabgsDiBlaaicdacqGHKjYO % caWG4bGaeyizImQaaGOmaaaa!51B5! \Leftrightarrow - 2f'\left( x \right) \ge 0 \Leftrightarrow f'\left( x \right) \le 0 \Leftrightarrow 0 \le x \le 2\)

Vậy hàm số y = -2f(x) đồng biến \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaam % iEaiabgIGiopaadmaabaGaaGimaiaacUdacaaIYaaacaGLBbGaayzx % aaaaaa!3EF8! \Leftrightarrow x \in \left[ {0;2} \right]\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho số phức z = -2+ i . Trong hình bên điểm biểu diễn số phức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca % WG6baaaaaa!3704! \overline z \) là:

Xem lời giải » 2 năm trước 53
Câu 2: Trắc nghiệm

Từ các chữ số 1; 2; 3;…; 9 lập được bao nhiêu số có 3 chữ số đôi một khác nhau

Xem lời giải » 2 năm trước 48
Câu 3: Trắc nghiệm

Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % WcaaqaaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiaa % dIhacqGHRaWkciGGZbGaaiyAaiaac6gacaaMc8UaamiEaiGacogaca % GGVbGaai4CaiaadIhacqGHRaWkcaaIXaaabaGaci4yaiaac+gacaGG % ZbWaaWbaaSqabeaacaaI0aaaaOGaamiEaiabgUcaRiGacohacaGGPb % GaaiOBaiaaykW7caWG4bGaci4yaiaac+gacaGGZbWaaWbaaSqabeaa % caaIZaaaaOGaamiEaaaacaWGKbGaamiEaaWcbaWaaSaaaeaacqaHap % aCaeaacaaI0aaaaaqaamaalaaabaGaeqiWdahabaGaaG4maaaaa0Ga % ey4kIipakiabg2da9iaadggacqGHRaWkcaWGIbGaciiBaiaac6gaca % aIYaGaey4kaSIaam4yaiGacYgacaGGUbWaaeWaaeaacaaIXaGaey4k % aSYaaOaaaeaacaaIZaaaleqaaaGccaGLOaGaayzkaaaaaa!6DBA! \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\cos }^2}x + \sin \,x\cos x + 1}}{{{{\cos }^4}x + \sin \,x{{\cos }^3}x}}dx} = a + b\ln 2 + c\ln \left( {1 + \sqrt 3 } \right)\), với a, b, c là các số hữu tỉ. Giá trị của abc bằng:

Xem lời giải » 2 năm trước 44
Câu 4: Trắc nghiệm

Trong không gian Oxyz, cho hai điểm A(-2;-1;3) và B( 0 ; 3 ;1) . Gọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaaaaa!391C! \left( \alpha \right)\) là mặt phẳng trung trực của AB. Một vecto pháp tuyến của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaaaaa!391C! \left( \alpha \right)\) có tọa độ là:

Xem lời giải » 2 năm trước 42
Câu 5: Trắc nghiệm

Biết rằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaadw % gadaahaaWcbeqaaiaadIhaaaaaaa!3905! x{e^x}\) là một nguyên hàm của hàm số f(-x) trên khoảng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % GHsislcqGHEisPcaGG7aGaey4kaSIaeyOhIukacaGLOaGaayzkaaaa % aa!3CED! \left( { - \infty ; + \infty } \right)\). Gọi F(x) là một nguyên hàm của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE % cadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGLbWaaWbaaSqabeaa % caWG4baaaaaa!3C24! f'\left( x \right){e^x}\) thỏa mãn F(0) = 1, giá trị của F(-1) bằng:

Xem lời giải » 2 năm trước 41
Câu 6: Trắc nghiệm

Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maabmaabaGaamiEaiab % gkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaGccq % GHsislcaaIZaGaamiEaiabgUcaRiaaiodaaaa!43D3! f\left( x \right) = {\left( {x - 1} \right)^3} - 3x + 3\). Đồ thị hình bên là của hàm số có công thức:

Xem lời giải » 2 năm trước 41
Câu 7: Trắc nghiệm

Trong không gian Oxyz, một vecto chỉ phương của đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaai % OoamaalaaabaGaamiEaiabgkHiTiaaigdaaeaacaaIXaaaaiabg2da % 9maalaaabaGaamyEaiabgUcaRiaaiodaaeaacaaIYaaaaiabg2da9m % aalaaabaGaamOEaiabgkHiTiaaiodaaeaacqGHsislcaaI1aaaaaaa % !4562! \Delta :\frac{{x - 1}}{1} = \frac{{y + 3}}{2} = \frac{{z - 3}}{{ - 5}}\) có tọa độ là:

Xem lời giải » 2 năm trước 39
Câu 8: Trắc nghiệm

Cho hình chóp SABCD  có đáy  ABCD là hình vuông cạnh a , SA = a và SA  \(\bot\) (ABCD). Thể tích khối chóp SABCD bằng:

Xem lời giải » 2 năm trước 38
Câu 9: Trắc nghiệm

Cho hình hộp ABCD.A'B'C'D' có thể tích bằng V.Gọi M, N, P, Q, E, F lần lượt là tâm các hình bình hành ABCD,A'B'C'D', ABA'B', BCB'C',DAA'D'. Thể tích khối đa diện có các đỉnh M, P, Q, E, F, N bằng:

Xem lời giải » 2 năm trước 38
Câu 10: Trắc nghiệm

Trong không gian Oxyz, cho đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacQ % dadaWcaaqaaiaadIhacqGHsislcaaIZaaabaGaaGOmaaaacqGH9aqp % daWcaaqaaiaadMhacqGHsislcaaI0aaabaGaaGymaaaacqGH9aqpda % WcaaqaaiaadQhacqGHsislcaaIYaaabaGaaGymaaaaaaa!4401! d:\frac{{x - 3}}{2} = \frac{{y - 4}}{1} = \frac{{z - 2}}{1}\) và 2 điểm  A( 6;3;-2); B(1;0;-1). Gọi \(\Delta\) là đường thẳng đi qua B, vuông góc với d và thỏa mãn khoảng cách từ A đến \(\Delta\) là nhỏ nhất. Một vectơ chỉ phương của  có tọa độ:

Xem lời giải » 2 năm trước 38
Câu 11: Trắc nghiệm

Cho f(x) và g(x) là các hàm số liên tục bất kì trên đoạn [a;b]. Mệnh đề nào sau đây đúng ?

Xem lời giải » 2 năm trước 37
Câu 12: Trắc nghiệm

Gọi (D) là hình phẳng giới hạn bởi các đường \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaaikdadaahaaWcbeqaaiaadIhaaaGccaGGSaGaamyEaiabg2da % 9iaaicdacaGGSaGaamiEaiabg2da9iaaicdaaaa!40C3! y = {2^x},y = 0,x = 0\) và x = 2. Thể tích V của khối tròn xoay tạo thành khi quay (D) quanh trục Ox được xác định bởi công thức:

Xem lời giải » 2 năm trước 37
Câu 13: Trắc nghiệm

Có bao nhiêu số nguyên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgI % GiopaabmaabaGaeyOeI0IaaGOmaiaaicdacaaIXaGaaGyoaiaacUda % caaIYaGaaGimaiaaigdacaaI5aaacaGLOaGaayzkaaaaaa!417B! a \in \left( { - 2019;2019} \right)\) để phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaciiBaiaac6gadaqadaqaaiaadIhacqGHRaWkcaaI1aaa % caGLOaGaayzkaaaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaiodada % ahaaWcbeqaaiaadIhaaaGccqGHsislcaaIXaaaaiabg2da9iaadIha % cqGHRaWkcaWGHbaaaa!45DB! \frac{1}{{\ln \left( {x + 5} \right)}} + \frac{1}{{{3^x} - 1}} = x + a\) có hai nghiệm phân biệt?

Xem lời giải » 2 năm trước 37
Câu 14: Trắc nghiệm

Bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaisdaaeqaaOWaaeWaaeaacaWG4bWaaWba % aSqabeaacaaIYaaaaOGaeyOeI0IaaG4maiaadIhaaiaawIcacaGLPa % aacqGH+aGpciGGSbGaai4BaiaacEgadaWgaaWcbaGaaGOmaaqabaGc % daqadaqaaiaaiMdacqGHsislcaWG4baacaGLOaGaayzkaaaaaa!48D8! {\log _4}\left( {{x^2} - 3x} \right) > {\log _2}\left( {9 - x} \right)\) có bao nhiêu nghiệm nguyên?

Xem lời giải » 2 năm trước 36
Câu 15: Trắc nghiệm

Có bao nhiêu số nguyên m để phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgU % caRiaaiodacqGH9aqpcaWGTbGaamyzamaaCaaaleqabaGaamiEaaaa % aaa!3C9C! x + 3 = m{e^x}\) có 2 nghiệm phân biệt?

Xem lời giải » 2 năm trước 36

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »