Lời giải của giáo viên
Xét phương trình \(3f\left( {x + 2} \right) - 4 = 0 \Leftrightarrow f(x + 2) = \frac{4}{3}(1)\)
Đặt X = x + 2, do \( - 2 \le x \le 2 \Leftrightarrow 0 \le x + 2 \le 4 \Leftrightarrow 0 \le X \le 4.\) Khi đó ta có \((1) \Leftrightarrow f(X) = \frac{4}{3}(*)\)
Vậy phương trình (1) có nghiệm trên đoạn [-2; 2] khi và chỉ khi phương trình (*) có nghiệm trên đoạn [0;4]
Dựa vào hình vẽ ta nhận thấy trên đoạn [0; 4] thì đường thẳng \(y = \frac{4}{3}\) cắt đồ thị hàm số đã cho đúng tại một điểm. Do đó phương trình (*) có đúng 1 nghiệm hay phương trình (1) có đúng một nghiệm.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SC vuông góc với mặt phẳng \(\left( {ABC} \right),SC = a\). Thể tích khối chóp S.ABC bằng:
Cho hàm số \(y = \frac{{x - 1}}{{x + 1}}.\) Phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1;0) là:
Giá trị nhỏ nhất của hàm số \(y = 3c{\rm{os}}2x - 4\sin x\) là:
Trung điểm các cạnh của hình tứ diện đều là đỉnh của hình:
Cho hàm số có đô thị như hình vẽ dưới đây. Chọn kết luận sai trong các kết luận sau:
Cho hàm số \(y = \frac{{8x - 5}}{{x + 3}}\) . Kết luận nào sau đây là đúng ?
Với giá trị nào của tham số m để đồ thị hàm số \(y = x - \sqrt {m{x^2} - 3x + 7} \) có tiệm cận ngang.
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Khẳng định nào sau đây là sai?
Cho hàm số \(f(x) = \frac{{\sin x - m}}{{\sin x + 1}}.\) Tìm giá trị của tham số m để giá trị lớn nhất của hàm số trên đoạn \(\left[ {0;\frac{{2\pi }}{3}} \right]\) bằng -2?
Cho hàm số y = f(x) liên tục trên R và có đồ thị hàm số y = f’(x) như hình bên:
Hỏi hàm số \(g(x) = f(3 - 2x)\) nghịch biến trên khoảng nào sau đây?
Tìm tất cả các giá trị của tham số m để phương trình \(x - m - \sqrt {9 - {x^2}} = 0\) có đúng 1 nghiệm dương?
Trong một khối đa diện, mệnh đề nào sau đây là đúng?
Cho hình chóp S.ABCDE có đáy hình ngũ giác và có thể tích là V. Nếu tăng chiều cao của hình chóp lên 3 lần đồng thời giảm độ dài các cạnh đi 3 lần thì ta được khối chóp mới S’.A’B’C’D’E’ có thể tích là V’. Tỷ số thể tích \(\frac{{V'}}{V}\) là: