Lời giải của giáo viên
Đồ thị hàm số có tiệm cận ngang.
=> Hàm số xác định trên một trong các miền \(\left( { - \infty ,a} \right),\left( { - \infty ;\left. a \right]} \right.,\left( {a, + \infty } \right)\) hoặc \(\left[ {a;\left. { + \infty } \right)} \right.\)
\( \Rightarrow m \ge 0\)
TH1: \(m = 0 \Rightarrow y = x - \sqrt { - 3x + 7} \) đồ thị hàm số không tiệm cận ngang.
TH2: \(m > 0 \Rightarrow y = x - \sqrt {m{x^2} - 3x + 7} \)
Khi \(x \to + \infty ,y = x - x\sqrt {m - \frac{3}{x} + \frac{7}{{{x^2}}}} \) , đồ thị hàm số có tiệm cận ngang khi và chỉ khi m = 1
Khi $\( \to - \infty ,y = x + x\sqrt {m - \frac{3}{x} + \frac{7}{{{x^2}}}} \to - \infty \), đồ thị hàm số không có tiệm cận ngang.
KL: m = 1
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y = f(x) liên tục trên đoạn [-2; 2] và có đồ thị như hình vẽ:
Số nghiệm của phương trình \(3f(x + 2) - 4 = 0\) trên đoạn [-2; 2] là?
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SC vuông góc với mặt phẳng \(\left( {ABC} \right),SC = a\). Thể tích khối chóp S.ABC bằng:
Cho hàm số \(y = \frac{{x - 1}}{{x + 1}}.\) Phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1;0) là:
Trung điểm các cạnh của hình tứ diện đều là đỉnh của hình:
Cho hàm số có đô thị như hình vẽ dưới đây. Chọn kết luận sai trong các kết luận sau:
Giá trị nhỏ nhất của hàm số \(y = 3c{\rm{os}}2x - 4\sin x\) là:
Cho hàm số \(y = \frac{{8x - 5}}{{x + 3}}\) . Kết luận nào sau đây là đúng ?
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Khẳng định nào sau đây là sai?
Tìm tất cả các giá trị của tham số m để phương trình \(x - m - \sqrt {9 - {x^2}} = 0\) có đúng 1 nghiệm dương?
Cho hàm số y = f(x) liên tục trên R và có đồ thị hàm số y = f’(x) như hình bên:
Hỏi hàm số \(g(x) = f(3 - 2x)\) nghịch biến trên khoảng nào sau đây?
Cho hàm số \(f(x) = \frac{{\sin x - m}}{{\sin x + 1}}.\) Tìm giá trị của tham số m để giá trị lớn nhất của hàm số trên đoạn \(\left[ {0;\frac{{2\pi }}{3}} \right]\) bằng -2?
Cho hàm số \(y = - {x^3} - m{x^2} + \left( {4m + 9} \right)x + 5\) (với m là tham số). Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)?
Trong một khối đa diện, mệnh đề nào sau đây là đúng?