Cho hàm số \(y = {\left( {\frac{3}{\pi }} \right)^{{x^2} + 2x + 3}}.\) Tìm khẳng định đúng.
A. Hàm số luôn đồng biến trên R
B. Hàm số luôn nghịch biến trên R
C. Hàm số luôn nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right).\)
D. Hàm số luôn đồng biến trên khoảng \(\left( { - \infty ; - 1} \right).\)
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(\int\limits_1^2 {f\left( {{x^2} + 1} \right)x\,dx = 2.} \) Khi đó \(I = \int\limits_2^5 {f\left( x \right)dx} \) bằng
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi M, N, P, Q lần lượt là trọng tâm các tam giác SAB, SBC, SCD, SDA. Biết thể tích khối chóp S.MNPQ là V, khi đó thể tích của khối chóp S.ABCD là
Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi E, F lần lượt là trung điểm của các cạnh SB, SC. Biết mặt phẳng (AEF) vuông góc với mặt phẳng (SBC). Tính thể tích khối chóp S.ABC.
Xét hàm số f(x)liên tục trên đoạn \(\left[ {0;1} \right]\) và thỏa mãn \(2f\left( x \right) + 3f\left( {1 - x} \right) = \sqrt {1 - {x^2}} .\) Tính \(I = \int\limits_0^1 {f\left( x \right)dx.} \)
Giải phương trình \(2{\sin ^2}x + \sqrt 3 \sin 2x = 3.\)
Một đám vi khuẩn tại ngày thứ x có số lượng là N(x) Biết rằng \(N'\left( x \right) = \frac{{2000}}{{1 + x}}\) và lúc đầu số lượng vi khuẩn là 5000 con. Vậy ngày thứ 12 số lượng vi khuẩn (sau khi làm tròn) là bao nhiêu con?
Cho hàm số y = f(x) có đạo hàm \(f'\left( x \right) = \left( {{x^2} - \sqrt 2 } \right){x^2}{\left( {x + 2} \right)^3},\forall x \in R.\) Số điểm cực tri của hàm số là:
Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc với nhau. Gọi H là hình chiếu của O trên mặt phẳng (ABC). Mệnh đề nào sau đây đúng?
Cho tham số thực a. Biết phương trình \({e^x} - {e^{ - x}} = 2\cos ax\) có 5 nghiệm thực phân biệt. Hỏi phương trình \({e^x} - {e^{ - x}} = 2\cos ax + 4\) có bao nhiêu nghiệm thực phân biệt?
Cho hình chóp S.ABCD có các cạnh bên bằng nhau và bằng 2a, đáy là hình chữ nhật ABCD có \(AB = 2a,\,AD = a.\) Gọi K là điểm thuộc BC sao cho \(3\overrightarrow {BK} + 2\overrightarrow {CK} = \overrightarrow 0 \). Tính khoảng cách giữa hai đường thẳng AD và SK.
Rút gọn biểu thức \(P = {x^{\frac{1}{3}}}.\sqrt[6]{x}\) với x > 0
Cho hàm số \(y = \frac{{x - 2}}{{x + 3}}.\) Tìm khẳng định đúng.
Biết đồ thị (C) ở hình bên là đồ thị hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right).\) Gọi (C’) là đường đối xứng với (C) qua đường thẳng
Hỏi (C’) là đồ thị của hàm số nào dưới đây?
Tập tất cả các giá trị của tham số m để hàm số \(y = \ln \left( {\cos x + 2} \right) - mx + 1\) đồng biến trên R là
Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( {1;2;3} \right).\) Gọi (P) là mặt phẳng đi qua điểm Mvà cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng (P) cắt các trục tọa độ tại các điểm A,B,C. Tính thể tích khối chóp O.ABC.