Cho hàm số \(y = {x^3} - 3{x^2} + 4\) có đồ thị (C) , đường thẳng \(\left( d \right):y = m\left( {x + 1} \right)\) với m là tham số, đường thẳng \(\left( \Delta \right):y = 2x - 7\). Tìm tổng tất cả các giá trị của tham số m để đường thẳng (d) cắt đồ thị (C) tại 3 điểm phân biệt A(-1;0); B;C sao cho B,C cùng phía với \(\Delta \) và \(d\left( {B;\Delta } \right) + d\left( {C,\Delta } \right) = 6\sqrt 5 \)
A. 0
B. 8
C. 5
D. 4
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB = a,BC = a\sqrt 3 ,SA = a\) và SA vuông góc với đáy ABCD. Tính sin\(\alpha \) với \(\alpha \) là góc tạo bởi đường thẳng BD và mặt phẳng (SBC) .
Cho hàm số bậc ba y = f(x) có đồ thị (C) như hình vẽ, đường thẳng d có phương trình y = x -1. Biết phương trình f(X) = 0 có ba nghiệm \({x_1} < {x_2} < {x_3}\). Giá trị của \({x_1}{x_3}\) bằng
Cho hình chóp đều S.ABCD có cạnh đáy bằng a , góc giữa cạnh bên và mặt đáy bằng 600. Tính thể tích của khối chóp S.ABCD theo a .
Cho số thực m > 1 thỏa mãn \(\int\limits_1^m {\left| {2m - 1} \right|} dx = 1\). Khẳng định nào sau đây đúng?
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a khoảng cách từ điểm A đến mặt phẳng (SBC) là \(\frac{{a\sqrt {15} }}{5}\) , khoảng cách giữa SA, BC là \(\frac{{a\sqrt {15} }}{5}\) . Biết hình chiếu của S lên mặt phẳng (ABC) nằm trong tam giác ABC tính thể tích khối chóp S.ABC .
Cho đa giác đều có 2018đỉnh. Hỏi có bao nhiêu hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho?
Giá trị lớn nhất của hàm số \(y = f\left( x \right) = {x^4} - 4{x^2} + 5\) trên đoạn [2; -3] bằng
Một ô tô đang chạy với vận tốc 10m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chạm dần đều với vận tốc \(v\left( t \right) = - 2t + 10\left( {m/s} \right)\) , trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.
Cho hình lăng trụ đứng ABC.A' B' C' có đáy ABC là tam giác vuông tại A, biết AB = a, AC = 2a và A' B = 3a. Tính thể tích của khối lăng trụ ABC.A' B' C'.
Cho hình nón có bán kính đáy băng a và độ dài đường sinh băng 2a. Diện tích xung quanh hình nón đó bằng
Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên R . Chọn mệnh đề sai trong các mệnh đề sau
Một hộp đựng 9 thẻ được đánh số 1;2;3;4;5;6;7;8;9. Rút ngẫu nhiên đồng thời hai thẻ và nhân hai số ghi trên hai thẻ lại với nhau. Tính xác suất để kết quả thu được là một số chẵn.
Cho \(a > 0,a \ne 1\) và \({\log _a}x = - 1;{\log _a}y = 4\) . Tính \(P = {\log _a}\left( {{x^2}{y^3}} \right)\)
Cho \(f\left( x \right) = {\left( {{e^x} + {x^3}\cos x} \right)^{2018}}\). Giá trị của \(f''\left( 0 \right)\) là