Lời giải của giáo viên
Đặt \(t=2 x \Rightarrow d t=2 d x\)
Đổi cận \(\left\{\begin{array}{l} x=0 \Rightarrow t=0 \\ x=1 \Rightarrow t=2 \end{array}\right.\)
Khi đó \(\int\limits_{0}^{1} x \cdot f^{\prime}(2 x) d x=\frac{1}{4} \int\limits_{0}^{2} t f^{\prime}(t) d t\)
Đặt \(\left\{\begin{array}{l} u=t \\ d v=f^{\prime}(t) d t \end{array} \Leftrightarrow\left\{\begin{array}{l} d u=d t \\ v=f(t) \end{array}\right.\right.\)
\(\begin{array}{c} \Rightarrow \int\limits_{0}^{2} t f^{\prime}(t) d t=\left.t f(t)\right|_{0} ^{2}-\int\limits_{0}^{2} f(t) d t \\ =2 f(2)-\int\limits_{0}^{2} f(x) d x \\ =2.16-4=28 \end{array}\)
Vậy \(\int\limits_{0}^{1} x \cdot f^{\prime}(2 x) d x=\frac{1}{4} \cdot 28=7\)
CÂU HỎI CÙNG CHỦ ĐỀ
Xếp ngẫu nhiên 3 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C vào sáu ghế xếp quanh một bàn tròn (một học sinh ngồi đúng một ghế). Tính xác suất đề học sinh lớp C ngồi giữa 2 học sinh lớp .B
Trong không gian Oxyz, hai mặt phẳng \(x-4 y+2 z-7=0\,\, và \,\,2 x-2 y+z+4=0\) chứ hai mặt của hình lập phương. Thề tích khối lập phương đó là:
Diện tích hình phẳng giới hạn bởi các đường \(y=x^{2}-x ; y=2 x-2 ; x=0 ; x=3\) được tính bởi công thức
Trong không gian Oxyz, cho điểm A(1 ; 2 ; 3) và B(3 ; 4 ; 7) . Phương trình mặt phẳng trung trực của đoạn thẳng AB là:
Tính \( \lim\limits _{x \rightarrow 0^{+}} \frac{x-\sqrt{x}}{x}\)
Tập hợp các điềm biều diễn số phúrc z thỏa mãn \(|2 z-1|=1 \)là:
Tính thề tích V của khối trụ có chu vi đáy là \(2 \pi,\) chiều cao là \(\sqrt{2}\)
Cho hinh chóp S . A B C D có \(S A \perp(A B C D)\), đáy ABCD là hình chữ nhật có \(A B=a \sqrt{3}, A D=a \sqrt{2}\) Khoảng cách giũra SD và BC bằng:
Số lượng của loại vi khuẩn A trong môt phòng thí nghiệm ước tính theo công thức \(S_{t}=S_{0} \cdot 2^{t}\) trong đó \(S_{0}\) là số lượng vi khuẩn A ban đầu, \(S_{t}\) là số lượng vi khuẩn A có sau t phút. Biết sau 3 phút thì số lương vi khuẩn A là 625 nghìn con. Hỏi sau bao lâu, kề từ lúc ban đầu, số lượng vi khuẩn A là 10 triệu con?
Trong không gian Oxyz, cho điểm M (1;-2; 3). Tọa độ điểm A là hình chiếu vuông góc của M trên măt phẳng (O y z) là:
Trong không gian Oxyz, một vecto chi phương của đường thẳng \(d: \frac{x-1}{1}=\frac{y+2}{-1}=\frac{z}{2}\) là
Cho tứ diện ABCD có A B, A C, A D đôi một vuông góc và\(A B=2 a, A C=3 a, A D=4 a\). . Thể tích khối tứ diện là:
Tập nghiệm của bất phưong trình \(\log _{\frac{1}{2}}(x-1) \geq 0\) là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tai A, \(\widehat{ A B C}=30^{\circ}\). Tam giác SAB đều cạnh a và hình chiếu vuông góc cùa S lên mặt phẳng (A B C) là trung điểm của cạnh A B . Thề tích của khối chóp S .ABC là