Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SAB\) là tam giác đều và \(\left( {SAB} \right)\) vuông góc với \(\left( {ABCD} \right).\) Tính \(\cos \varphi \) với \(\varphi \) là góc tạo bởi \((SAC)\) và \((SCD).\)
A. \(\dfrac{{\sqrt 2 }}{7}\)
B. \(\dfrac{{\sqrt 6 }}{7}\)
C. \(\dfrac{{\sqrt 3 }}{7}\)
D. \(\dfrac{5}{7}\)
Lời giải của giáo viên
Gọi \(H;M\) là trung điểm của \(AB;BC\). \(DM\) cắt \(CH;AC\) lần lượt tại \(K\) và \(I\) .
+ Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right.\) mà \(SH \bot AB\) (do tam giác \(SAB\) đều có \(SH\) là đường trung tuyến)
Suy ra \(SH \bot \left( {ABCD} \right)\)
+ Xét \(\Delta BHC = \Delta CMD\left( {c - g - c} \right) \Rightarrow \widehat B = \widehat {DMC}\)
mà \(\widehat B + \widehat {BCH} = 90^\circ \Rightarrow \widehat {KMC} + \widehat {KCM} = 90^\circ \) \( \Rightarrow \widehat {MKC} = 90^\circ \Rightarrow MD \bot CH\)
Ta có \(MD \bot CH\,\left( {cmt} \right);\,MD \bot SH\) (do \(SH \bot \left( {ABCD} \right)\)) nên \(MD \bot \left( {SHC} \right) \Rightarrow MD \bot SC\)
+ Trong \(\left( {SHC} \right)\) kẻ \(KE \bot SC\) tại \(E.\)
Ta có \(KE \bot SC\) và \(MD \bot SC \Rightarrow SC \bot \left( {EKD} \right)\)
Lại có \(\left\{ \begin{array}{l}\left( {SDC} \right) \bot \left( {KED} \right)\\\left( {SAC} \right) \bot \left( {KED} \right)\\\left( {SDC} \right) \cap \left( {KED} \right) = DE\\\left( {SAC} \right) \cap \left( {KED} \right) = IE\end{array} \right. \Rightarrow \) góc giữa \((SAC)\) và \((SCD)\) là góc tạo bởi \(EI;ED\).
+ Vì \(MC//AD \Rightarrow \dfrac{{IA}}{{IC}} = \dfrac{{ID}}{{IM}} = \dfrac{{AD}}{{MC}} = \dfrac{{2a}}{a} = 2\)
\( \Rightarrow ID = \dfrac{2}{3}MD = \dfrac{2}{3}\sqrt {D{C^2} + M{C^2}} = \dfrac{2}{3}\sqrt {{a^2} + \dfrac{{{a^2}}}{4}} = \dfrac{2}{3}.\dfrac{{a\sqrt 5 }}{2} = \dfrac{{a\sqrt 5 }}{3}\)
Và \(\dfrac{{IA}}{{IC}} = 2 \Rightarrow IC = \dfrac{1}{3}AC = \dfrac{{a\sqrt 2 }}{2}\)
+ Xét tam giác vuông \(DMC\) có \(CK\) là đường cao nên \(CK.MD = MC.CD \Leftrightarrow CK.\dfrac{{a\sqrt 5 }}{2} = a.\dfrac{a}{2} \Rightarrow CK = \dfrac{a}{{\sqrt 5 }}\)
+ Ta có \(\Delta CEK\) đồng dạng với \(\Delta CHS\) \( \Rightarrow \dfrac{{EK}}{{SH}} = \dfrac{{CK}}{{CS}}\) \( \Rightarrow EK = \dfrac{{SH.CK}}{{CS}} = \dfrac{{\dfrac{{a\sqrt 3 }}{2}.\dfrac{a}{{\sqrt 5 }}}}{{\sqrt {H{S^2} + C{H^2}} }} = \dfrac{{\dfrac{{{a^2}\sqrt 3 }}{{2\sqrt 5 }}}}{{a\sqrt 2 }} = \dfrac{{a\sqrt 3 }}{{2\sqrt {10} }}\)
+ Tam giác \(KEC\) vuông tại E nên \(EC = \sqrt {C{K^2} - E{K^2}} = \sqrt {{{\left( {\dfrac{a}{{\sqrt 5 }}} \right)}^2} - {{\left( {\dfrac{{a\sqrt 3 }}{{2\sqrt {10} }}} \right)}^2}} = \dfrac{a}{{2\sqrt 2 }}\)
+ Tam giác \(IKC\) vuông tại K nên \(KI = \sqrt {I{C^2} - C{K^2}} = \sqrt {\dfrac{{2{a^2}}}{9} - \dfrac{{{a^2}}}{5}} = \dfrac{a}{{3\sqrt 5 }}\)
+ Xét tam giác \(EKI\) vuông tại K (vì \(MD \bot \left( {SHC} \right) \Rightarrow DK \bot KE\) ) có
\(EI = \sqrt {E{K^2} + K{I^2}} = \sqrt {\dfrac{{3{a^2}}}{{40}} + \dfrac{{{a^2}}}{{45}}} = \dfrac{{a\sqrt 7 }}{{6\sqrt 2 }}\)
+ Xét tam giác \(ECD\) vuông tại E (do \(SC \bot \left( {EDK} \right) \Rightarrow SC \bot ED\)) có
\(ED = \sqrt {C{D^2} - E{C^2}} = \sqrt {{a^2} - {{\left( {\dfrac{a}{{2\sqrt 2 }}} \right)}^2}} = \dfrac{{a\sqrt 7 }}{{2\sqrt 2 }}\)
+ Xét tam giác \(EID\) ta có \(\cos IED = \dfrac{{I{E^2} + E{D^2} - I{D^2}}}{{2IE.ED}} = \dfrac{{\dfrac{{7{a^2}}}{{72}} + \dfrac{{7{a^2}}}{8} - \dfrac{{5{a^2}}}{9}}}{{2.\dfrac{{a\sqrt 7 }}{{6\sqrt 2 }}.\dfrac{{a\sqrt 7 }}{{2\sqrt 2 }}}} = \dfrac{5}{7} > 0\)
Vậy \(\cos \varphi = \dfrac{5}{7}.\)
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Tập xác định của hàm số \(y = {x^4} - 2018{x^2} - 2019\) là
Cho hàm số \(y = f\left( x \right) = \,a\,{x^3} + b{x^2} + cx + d\) có đồ thị hàm số như hình bên dưới đây:
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({f^2}\left( x \right) - \left( {m + 5} \right)\left| {f\left( x \right)} \right| + 4m + 4 = 0\) có 7 nghiệm phân biệt?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,BC = a\sqrt 3 ,SA = a\) và \(SA\) vuông góc với đáy \(ABCD\). Tính \(\sin \alpha \) với \(\alpha \) là góc tạo bởi đường thẳng \(BD\) và mặt phẳng \(\left( {SBC} \right)\).
Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\), góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Tính thể tích của khối chóp \(S.ABCD\) theo \(a\).
Cho hàm số \(y = {x^3} - 3{x^2} + 4\) có đồ thị \(\left( C \right)\) , đường thẳng \((d):y = m(x + {\rm{ }}1)\) với \(m\) là tham số, đường thẳng \(\left( \Delta \right):y = 2x - 7.\) Tìm tổng tất cả các giá trị của tham số \(m\) để đường thẳng \(\left( d \right)\) cắt đồ thị \(\left( C \right)\) tại 3 điểm phân biệt \(A( - 1;0);{\rm{ }}B;{\rm{ }}C\) sao cho \(B,C\) cùng phía với \(\Delta \) và \(d(B;\Delta ){\rm{ }} + d(C;\Delta ){\rm{ }} = {\rm{ }}6\sqrt 5 .\)
Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = \dfrac{1}{4}{x^4} + mx - \dfrac{3}{{2x}}\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\)?
Giá trị lớn nhất của hàm số \(y = f\left( x \right) = {x^4} - 4{x^2} + 5\) trên đoạn \(\left[ { - 2;3} \right]\) bằng
Một hình trụ có bán kính đáy bằng chiều cao và bằng \(a.\) Một hình vuông \(ABCD\) có \(AB;{\rm{ }}CD\) là 2 dây cung của 2 đường tròn đáy và mặt phẳng \((ABCD)\) không vuông góc với đáy. Diện tích hình vuông đó bằng
Cho tam giác \(ABC\) có \(A\left( {1; - 2;0} \right);B\left( {2;1; - 2} \right);C\left( {0;3;4} \right)\). Tìm tọa độ điểm D để tứ giác \(ABCD\) là hình bình hành.
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\) như hình vẽ, đường thẳng \(d\) có phương trình \(y = x - 1.\) Biết phương trình \(f(x) = 0\) có ba nghiệm \({x_1} < {x_2} < {x_3}\). Giá trị của \({x_1}{x_3}\) bằng
Cho tam giác \(ABC\) cân tại \(A,\) góc \(\angle BAC = {120^0}\) và \(AB = 4cm.\) Tính thể tích khối tròn xoay lớn nhất có thể khi ta quay tam giác \(ABC\) xung quanh đường thẳng chứa một cạnh của tam giác \(ABC\)
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\), biết \(AB = a,AC = 2a\) và \(A'B = 3a\). Tính thể tích của khối lăng trụ \(ABC.A'B'C'\).
Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông cân ở \(B\) , \(AC = a\sqrt {2.} \) \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) và \(SA = a.\) Gọi \(G\) là trọng tâm của tam giác \(SBC\) Một mặt phẳng đi qua hai điểm \(A,G\) và song song với \(BC\) cắt \(SB,\,SC\) lần lượt tại \(B'\) và \(C'\) . Thể tích khối chóp \(S.AB'C'\)bằng:
Cho khối chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy, \(SA = 2a\). Tính theo \(a\) thể tích khối chóp \(S.ABCD\).