Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật tâm \(O,\ SD\bot \left( ABCD \right),AD=a\) và \(\widehat{AOD}=60{}^\circ \). Biết SC tạo với đáy một góc \(45{}^\circ \). Tính khoảng cách giữa hai đường thẳng AC và SB.
A. \(\frac{2a\sqrt{21}}{21}\)
B. \(\frac{a\sqrt{6}}{4}\)
C. \(\frac{a\sqrt{15}}{5}\)
D. \(\frac{2a}{3}\)
Lời giải của giáo viên
Tam giác \(\Delta AOD\) đều (tam giác cân có 1 góc \(60{}^\circ \))
Suy ra \(OA=AD=a\Rightarrow AC=2a\Rightarrow CD=a\sqrt{3}\).
Ta có \(\widehat{SCD}=45{}^\circ \Rightarrow SD=CD\tan 45{}^\circ =a\sqrt{3}\).
Ta có \(\frac{1}{{{d}^{2}}}=\frac{1}{{{c}^{2}}}+\frac{{{k}^{2}}}{{{h}^{2}}}\).
Trong đó:
\(\begin{align} & c=d\left( B;AC \right)\Rightarrow \frac{1}{{{c}^{2}}}=\frac{1}{B{{A}^{2}}}+\frac{1}{B{{D}^{2}}} \\ & k=\frac{BD}{BO}=2,\ h=SD=a\Rightarrow \frac{1}{{{d}^{2}}}=\frac{1}{{{\sqrt{3}}^{2}}}+\frac{1}{{{1}^{2}}}+\frac{{{2}^{2}}}{{{\sqrt{3}}^{2}}}\Rightarrow d=\frac{\sqrt{6}}{4} \\ \end{align}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Họ nguyên hàm của hàm số \(f\left( x \right)={{e}^{2x}}+{{x}^{2}}\) là:
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( a{{b}^{2}} \right)\) bằng
Phương trình mặt cầu \(\left( S \right)\) có tâm \(I\left( 1;-2;3 \right)\) và tiếp xúc với mặt phẳng \(\left( P \right):x-2y+2=0\) là:
Thể tích của khối lăng trụ tam giác đều có cạnh đáy bằng a và độ dài cạnh bên bằng 2a là:
Tiếp tuyến của đồ thị hàm số \(y=-{{x}^{3}}+3x-2\) tại điểm có hoành độ \({{x}_{0}}=2\) có phương trình là
Cho khối nón có độ dài đường sinh bằng 2a, góc giữa đường sinh và đáy bằng \(60{}^\circ \). Thể tích của khối nón đã cho là:
Đồ thị hàm số \(y={{x}^{4}}-4{{x}^{2}}+2\) cắt đường thẳng \(d:y=m\) tại 4 điểm phân biệt và tạo ra các hình phẳng có diện tích \({{S}_{1}},{{S}_{2}},{{S}_{3}}\) thỏa mãn \({{S}_{1}}+{{S}_{2}}={{S}_{3}}\) (như hình vẽ). Giá trị m thuộc khoảng nào sau đây?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm là \(f'\left( x \right)={{\left( x-2 \right)}^{4}}\left( x-1 \right)\left( x+3 \right)\sqrt{{{x}^{2}}+3}\). Tìm số điểm cực trị của hàm số \(y=f\left( x \right)\):
Trong không gian \(Oxyz\), đường thẳng \(d:\frac{x-1}{2}=\frac{y}{1}=\frac{z}{3}\) đi qua điểm nào dưới đây?
Tìm nghiệm của phương trình \({{\log }_{2}}\left( x-1 \right)=3.\)
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ:
Số điểm cực trị của hàm số đã cho là:
Tìm công thức tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi parabol \(\left( P \right):y={{x}^{2}}\) và đường thẳng d:y=2x quay xung quanh trục \(Ox\).
Xét các số phức z thỏa mãn \(\left| z \right|=1\). Đặt \(\text{w}=\frac{2\text{z}-i}{2+iz}\), giá trị lớn nhất của biểu thức \(P=\left| \text{w}+3i \right|\) là
Cho \(\int\limits_{1}^{2}{f\left( x \right)dx}=2\) và \(\int\limits_{1}^{2}{2g\left( x \right)dx}=8\). Khi đó \(\int\limits_{1}^{2}{\left[ f\left( x \right)+g\left( x \right) \right]dx}\) bằng: