Câu hỏi Đáp án 2 năm trước 39

Cho hình chóp \(S.ABCD\) có đáy là hình thang cân với đáy\(AB = 2a,\,\,AD = BC = CD = a,\) mặt bên \(SAB\) là tam giác cân đỉnh \(S\) và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( {ABCD} \right).\) Biết khoảng cách từ \(A\) tới mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{2a\sqrt {15} }}{5},\) tính theo \(a\) thể tích  \(V\) của khối chóp \(S.ABCD.\)

A. \(V = \frac{{3{a^3}\sqrt 3 }}{4}.\) 

B. \(V = \frac{{3{a^3}}}{4}.\) 

Đáp án chính xác ✅

C. \(V = \frac{{3{a^3}\sqrt 5 }}{4}.\) 

D. \(V = \frac{{3{a^3}\sqrt 2 }}{8}.\) 

Lời giải của giáo viên

verified HocOn247.com

Gọi O, I là trung điểm của AB, BC; H là hình chiếu vuông góc của O lên SI.

Tam giác SAB cân tại S\( \Rightarrow SO \bot AB\)

Ta có: \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\SO \subset \left( {SAB} \right)\\SO \bot AB\end{array} \right. \Rightarrow SO \bot \left( {ABCD} \right)\)

Do O là trung điểm của AB nên \(d\left( {A;\left( {SBC} \right)} \right) = 2.d\left( {O;\left( {SBC} \right)} \right)\) (1)\(ABCD\) là hình thang cân với đáy\(AB = 2a,\,\,AD = BC = CD = a \Rightarrow \Delta OAD,\Delta OCD,\Delta OBC\) đều là các tam giác đều, cạnh a  \( \Rightarrow {S_{ABCD}} = 3.{S_{OBC}} = 3.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{3{a^2}\sqrt 3 }}{4}\)

\(\Delta OBC\) đều, I là trung điểm của BC \( \Rightarrow \left\{ \begin{array}{l}OI \bot BC\\OI = \frac{{a\sqrt 3 }}{2}\end{array} \right.\) .

Mà \(BC \bot SO\) (do \(SO \bot \left( {ABCD} \right)\))

\( \Rightarrow BC \bot \left( {SOI} \right) \Rightarrow BC \bot OH\)

Lại có: \(SI \bot OH\,\, \Rightarrow OH \bot \left( {SBC} \right) \Rightarrow d\left( {O;\left( {SBC} \right)} \right) = OH\) (2)

Từ (1), (2) suy ra: \(d\left( {A;\left( {SBC} \right)} \right) = 2.OH = \frac{{2a\sqrt {15} }}{5} \Rightarrow OH = \frac{{a\sqrt {15} }}{5}\)

\(\Delta SOI\) vuông tại O, \(OH \bot SI \Rightarrow \frac{1}{{S{O^2}}} + \frac{1}{{O{I^2}}} = \frac{1}{{O{H^2}}} \Leftrightarrow \frac{1}{{S{O^2}}} + \frac{1}{{\frac{3}{4}{a^2}}} = \frac{1}{{\frac{3}{5}{a^2}}} \Leftrightarrow SO = a\sqrt 3 \)

Thể tích khối chóp \(S.ABCD\) là: \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.a\sqrt 3 .\frac{{3{a^2}\sqrt 3 }}{4} = \frac{{3{a^2}}}{4}\).

Chọn B.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Mặt cầu có bán kính \(a\) thì có diện tích xung quanh bằng 

Xem lời giải » 2 năm trước 45
Câu 2: Trắc nghiệm

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({\log _{\sqrt 2 }}(x - 1) = {\log _2}(mx - 8)\) có hai nghiệm thực phân biệt? 

Xem lời giải » 2 năm trước 44
Câu 3: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có bảng biến thiên như hình dưới đây

Tập hợp \(S\) tất cả các giá trị của m đề phương trình \(f\left( x \right) = m\) có đúng ba nghiệm thực là

Xem lời giải » 2 năm trước 43
Câu 4: Trắc nghiệm

Giá trị nhỏ nhất của hàm số \(y = x{e^{x + 1}}\) trên \(\left[ { - 2;0} \right]\) bằng 

Xem lời giải » 2 năm trước 41
Câu 5: Trắc nghiệm

Một hình trụ có hai đáy là hai hình tròn \(\left( {O;r} \right)\) và \(\left( {O';r} \right).\) Khoảng cách giữa hai đáy là \(OO' = r\sqrt 3 .\) Một hình nón có đỉnh là \(O\) và có đáy là hình tròn \(\left( {O';r} \right).\) Gọi \({S_1}\) là diện tích xung quanh của hình trụ và \({S_2}\) là diện tích xung quanh của hình nón. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}.\)

Xem lời giải » 2 năm trước 40
Câu 6: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới đây. Mệnh đề nào sau đây đúng?

Xem lời giải » 2 năm trước 39
Câu 7: Trắc nghiệm

Tìm tập xác định của hàm số \(y = \frac{1}{{1 - \ln x}}\). 

Xem lời giải » 2 năm trước 39
Câu 8: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Mệnh đề nào sau đây đúng?

Xem lời giải » 2 năm trước 39
Câu 9: Trắc nghiệm

Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích bằng \(72c{m^3}.\) Gọi \(M\) là trung điểm của đoạn thẳng\(BB'.\) Tính thể tích khối tứ diện \(ABCM.\) 

Xem lời giải » 2 năm trước 38
Câu 10: Trắc nghiệm

Cho hình chóp \(S.ABC\) có \(SA = 2a,SB = 3a,SC = 4a\) và \(\widehat {ASB} = \widehat {BSC} = {60^ \circ },\widehat {ASC} = {90^ \circ }.\) Tính thể tích \(V\) của khối chóp \(S.ABC.\) 

Xem lời giải » 2 năm trước 37
Câu 11: Trắc nghiệm

Cho khối chóp có thể tích bằng \(32c{m^3}\) và diện tích đáy bằng \(16c{m^2}.\) Chiều cao của khối chóp đó là 

Xem lời giải » 2 năm trước 37
Câu 12: Trắc nghiệm

Cho hàm số \(y = \frac{{x + 2}}{{2x + 3}}\) có đồ thị \((C)\). Đường thẳng \(d\) có phương trình \(y = ax + b\) là tiếp tuyến của \((C)\), biết \(d\) cắt trục hoành tại \(A\)và cắt trục tung tại \(B\)sao cho tam giác \(OAB\)cân tại \(O\), với \(O\) là gốc tọa độ. Tính \(a + b\).

Xem lời giải » 2 năm trước 37
Câu 13: Trắc nghiệm

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\)thuộc đoạn \(\left[ { - 2018;2019} \right]\) để hàm số \(y = m{x^4} + \left( {m + 1} \right){x^2} + 1\)có đúng một điểm cực đại? 

Xem lời giải » 2 năm trước 37
Câu 14: Trắc nghiệm

Hàm số \(f(x) = {2^{2x}}\) có đạo hàm 

Xem lời giải » 2 năm trước 37
Câu 15: Trắc nghiệm

Cho hình chóp tứ giác đều có tất cả các cạnh bằng \(2a.\) Bán kính mặt cầu ngoại tiếp hình chóp đã cho bằng \(\frac{{a\sqrt 6 }}{2}.\)

Xem lời giải » 2 năm trước 37

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »