Lời giải của giáo viên
Điều kiện: \(\left\{ \begin{array}{l}x > 1\\mx > 8\end{array} \right..\)
Ta có: \({\log _{\sqrt 2 }}(x - 1) = {\log _2}(mx - 8)\,\,\,\,(1)\; \Leftrightarrow lo{g_2}{\left( {x - 1} \right)^2} = {\log _2}\left( {mx - 8} \right)\)
\( \Leftrightarrow {\left( {x - 1} \right)^2} = mx - 8 \Leftrightarrow {x^2} - 2x + 9 = m \Leftrightarrow x - 2 + \frac{9}{x} = m\;\;\;\left( {do\;\;x > 1} \right)\;\;\;\left( 2 \right)\)
Phương trình (1) có 2 nghiệm thực phân biệt \( \Leftrightarrow \) Phương trình (2) có 2 nghiệm thực phân biệt lớn hơn 1 (*)
Xét hàm số \(f\left( x \right) = x - 2 + \frac{9}{x},\,\,\,x > 1\) có \(f'\left( x \right) = 1 - \frac{9}{{{x^2}}},\,\,\,f'\left( x \right) = 0 \Leftrightarrow x = 3\)
Bảng biến thiên:
(*)\( \Leftrightarrow 4 < m < 8\). Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {5;6;7} \right\}\): có 3 giá trị của m thỏa mãn.
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Mặt cầu có bán kính \(a\) thì có diện tích xung quanh bằng
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có bảng biến thiên như hình dưới đây
Tập hợp \(S\) tất cả các giá trị của m đề phương trình \(f\left( x \right) = m\) có đúng ba nghiệm thực là
Giá trị nhỏ nhất của hàm số \(y = x{e^{x + 1}}\) trên \(\left[ { - 2;0} \right]\) bằng
Một hình trụ có hai đáy là hai hình tròn \(\left( {O;r} \right)\) và \(\left( {O';r} \right).\) Khoảng cách giữa hai đáy là \(OO' = r\sqrt 3 .\) Một hình nón có đỉnh là \(O\) và có đáy là hình tròn \(\left( {O';r} \right).\) Gọi \({S_1}\) là diện tích xung quanh của hình trụ và \({S_2}\) là diện tích xung quanh của hình nón. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}.\)
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Mệnh đề nào sau đây đúng?
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới đây. Mệnh đề nào sau đây đúng?
Tìm tập xác định của hàm số \(y = \frac{1}{{1 - \ln x}}\).
Cho hình chóp \(S.ABCD\) có đáy là hình thang cân với đáy\(AB = 2a,\,\,AD = BC = CD = a,\) mặt bên \(SAB\) là tam giác cân đỉnh \(S\) và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( {ABCD} \right).\) Biết khoảng cách từ \(A\) tới mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{2a\sqrt {15} }}{5},\) tính theo \(a\) thể tích \(V\) của khối chóp \(S.ABCD.\)
Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích bằng \(72c{m^3}.\) Gọi \(M\) là trung điểm của đoạn thẳng\(BB'.\) Tính thể tích khối tứ diện \(ABCM.\)
Cho khối chóp có thể tích bằng \(32c{m^3}\) và diện tích đáy bằng \(16c{m^2}.\) Chiều cao của khối chóp đó là
Cho hình chóp \(S.ABC\) có \(SA = 2a,SB = 3a,SC = 4a\) và \(\widehat {ASB} = \widehat {BSC} = {60^ \circ },\widehat {ASC} = {90^ \circ }.\) Tính thể tích \(V\) của khối chóp \(S.ABC.\)
Cho hàm số \(y = \frac{{x + 2}}{{2x + 3}}\) có đồ thị \((C)\). Đường thẳng \(d\) có phương trình \(y = ax + b\) là tiếp tuyến của \((C)\), biết \(d\) cắt trục hoành tại \(A\)và cắt trục tung tại \(B\)sao cho tam giác \(OAB\)cân tại \(O\), với \(O\) là gốc tọa độ. Tính \(a + b\).
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\)thuộc đoạn \(\left[ { - 2018;2019} \right]\) để hàm số \(y = m{x^4} + \left( {m + 1} \right){x^2} + 1\)có đúng một điểm cực đại?
Cho hình chóp tứ giác đều có tất cả các cạnh bằng \(2a.\) Bán kính mặt cầu ngoại tiếp hình chóp đã cho bằng \(\frac{{a\sqrt 6 }}{2}.\)
Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào ?