Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa SA và mặt phẳng \(\left( SBC \right)\) bằng \({{45}^{0}}\) (tham khảo hình bên). Thể tích của khối chóp S.ABC bằng
A. \(\frac{{{a^3}}}{8}.\)
B. \(\frac{{3{a^3}}}{8}.\)
C. \(\frac{{\sqrt 3 {a^3}}}{{12}}.\)
D. \(\frac{{{a^3}}}{4}.\)
Lời giải của giáo viên
Gọi M là trung điểm BC, trong \(\left( SAM \right)\) kẻ \(AH\bot SM\left( H\in SM \right)\) ta có:
\(\left\{ \begin{align} & BC\bot AM \\ & BC\bot SA \\ \end{align} \right.\Rightarrow BC\bot \left( SAM \right)\Rightarrow BC\bot AH\)
\(\left\{ \begin{align} & AH\bot BC\left( cmt \right) \\ & AH\bot SM \\ \end{align} \right.\Rightarrow AH\bot \left( SBC \right)\)
\(\Rightarrow SH$ là hình chiếu vuông góc của SA lên \(\left( SBC \right)\)
\(\Rightarrow \angle \left( SA;\left( SBC \right) \right)=\angle \left( SA;SH \right)\Leftrightarrow ASH=\angle ASM={{45}^{0}}\Rightarrow \Delta SAM\) vuông cân tại A.
Vì ABC là tam giác đều cạnh a nên \(AM=\frac{a\sqrt{3}}{2}\Rightarrow SA=AM=\frac{a\sqrt{3}}{2}\) và \({{S}_{\Delta ABC}}=\frac{{{a}^{2}}\sqrt{3}}{4}.\)
Vậy \({{V}_{S.ABC}}=\frac{1}{3}SA.{{S}_{\Delta ABC}}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.\frac{{{a}^{2}}\sqrt{3}}{4}=\frac{{{a}^{3}}}{8}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng xét dấu của đạo hàm \(f'\left( x \right)\) như sau:
Hàm số \(f\left( x \right)\) có bao nhiêu điểm cực trị?
Trong không gian Oxyz, cho hai điểm \(A\left( 2;1;3 \right)\) và \(B\left( 6;5;5 \right).\) Xét khối nón \(\left( N \right)\) có đỉnh A, đường tròn đáy nằm trên mặt cầu đường kính AB. Khi \(\left( N \right)\) có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy của \(\left( N \right)\) có phương trình dạng 2x+by+cz+d=0. Giá trị của b+c+d bằng
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{4}}-2{{x}^{2}}+3\) trên đoạn \(\left[ 0;2 \right].\) Tổng M+m bằng
Nếu \(\int\limits_{1}^{2}{f\left( x \right)dx=5}\) và \(\int\limits_{2}^{3}{f\left( x \right)dx=-2}\) thì \(\int\limits_{1}^{3}{f\left( x \right)dx}\) bằng
Với a là số thực dương tùy ý, \({{\log }_{3}}\left( 9a \right)\) bằng
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào, trong các khoảng dưới đây?
Nghiệm của phương trình \({{\log }_{2}}\left( 3x \right)=3\) là:
Với a là số thực dương tùy ý, \(\sqrt{{{a}^{3}}}\) bằng
Trong không gian Oxyz, cho hai điểm \(A\left( 1;1;2 \right)\) và \(B\left( 3;1;0 \right).\) Trung điểm của đoạn thẳng AB có tọa độ là
Trong không gian Oxyz, mặt cầu có tâm là gốc tọa độ O và đi qua điểm \(M\left( 0;0;2 \right)\) có phương trình là:
Xét hai số phức \({{z}_{1}},{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2\) và \(\left| {{z}_{1}}-{{z}_{2}} \right|=\sqrt{3}.\) Giá trị lớn nhất của \(\left| 3{{z}_{1}}+{{z}_{2}}-5i \right|\) bằng
Một khối chóp có diện tích đáy bằng 6 và chiều cao bằng 5. Thể tích của khối chóp bằng