Cho hình chóp \(S.ABC\) có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của \(S\) lên \(\left( ABC \right)\) trùng với trung điểm của cạnh BC. Biết tam giác \(SBC\) là tam giác đều. Số đo của góc giữa \(SA\) và \(\left( ABC \right)\) bằng
A. \({{75}^{0}}.\)
B. \({{45}^{0}}.\)
C. \({{30}^{0}}.\)
D. \({{60}^{0}}.\)
Lời giải của giáo viên
Ta có: hình chiếu của \(SA\) trên \(\left( ABC \right)\) là AH nên \(\left( \widehat{SA;\left( ABC \right)} \right)=\widehat{\left( SA;AH \right)}=\widehat{SAH}\)
Xét tam giác vuông \(SAH\) ta có: \(AH=\frac{a\sqrt{3}}{2};SA=a\)
Khi đó: \(AH=\frac{a\sqrt{3}}{2};\cos \left( \widehat{SAH} \right)=\frac{AH}{SA}=\frac{\sqrt{3}}{2}\Rightarrow \widehat{SAH}={{30}^{0}}.\)
Vậy góc giữa \(SA\) và \(\left( ABC \right)\) bằng \({{30}^{0}}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) có đồ thị \(f'\left( x \right)\) như hình vẽ
Hàm số \(y=f\left( 1-x \right)+\frac{{{x}^{2}}}{2}-x\) nghịch biến trên khoảng
Tìm tập nghiệm của phương trình \({{4}^{{{x}^{2}}}}={{2}^{x+1}}\)
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}+1.\) Khẳng định nào sau đây đúng?
Tìm giá trị nhỏ nhất \(m\) của hàm số: \(y={{x}^{2}}+\frac{2}{x}\) trên đoạn \(\left[ \frac{1}{2};2 \right].\)
Giải phương trình \({{\log }_{3}}\left( 2x-1 \right)=1\)
Tập xác định của hàm số \({{\left( {{x}^{2}}-3x+2 \right)}^{\pi }}\) là
Tìm tất cả các giá trị thực của tham số m để hàm số \(y={{x}^{3}}+{{x}^{2}}+mx+1\) đồng biến trên \(\left( -\infty ;+\infty \right).\)
Cho hàm số \(y={{x}^{3}}-3x\) có đồ thị như hình vẽ bên. Phương trình \(\left| {{x}^{3}}-3x \right|={{m}^{2}}+m\) có 6 nghiệm phân biệt khi và chỉ khi:
Số cách chọn 5 học sinh trong một lớp có 25 học sinh nam và 16 học sinh nữ là
Tập xác định của phương trình \(\sqrt{x-1}+\sqrt{x-2}=\sqrt{x-3}\) là
Cho hình chóp tam giác \(S.ABC\) với \(SA,SB,SC\) đôi một vuông góc và \(SA=SB=SC=a.\) Tính thể tích của khối chóp \(S.ABC.\)
Cho hàm số \(y=\frac{2x-m}{x+2}\) với m là tham số, \(m\ne -4.\) Biết \(\underset{x\in \left[ 0;2 \right]}{\mathop{\min }}\,f\left( x \right)+\underset{x\in \left[ 0;2 \right]}{\mathop{\max }}\,f\left( x \right)=-8.\) Giá trị của tham số m bằng
Cho hình lăng trụ ABC.A'B'C' trên các cạnh AA', BB' lấy các điểm M, N sao cho \(AA'=4A'M,BB'=4B'N.\) Mặt phẳng \(\left( C'MN \right)\) chia khối lăng trụ thành hai phần. Gọi \({{V}_{1}}\) là thể tích khối chóp C'.A'B'MN và \({{V}_{2}}\) là thể tích khối đa diện ABCMNC'. Tính tỷ số \(\frac{{{V}_{1}}}{{{V}_{2}}}\)
Tập nghiệm \(S\) của phương trình \(\sqrt{2x-3}=x-3\) là:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
Mệnh đề nào dưới đây đúng?