Câu hỏi Đáp án 2 năm trước 33

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại\(A\),\(AB = 1{\rm{cm}}\),\(AC = \sqrt 3 {\rm{cm}}\). Tam giác \(SAB\), \(SAC\) lần lượt vuông tại \(B\) và \(C\). Khối cầu ngoại tiếp hình chóp \(S.ABC\) có thể tích bằng\(\frac{{5\sqrt 5 \pi }}{6}{\rm{c}}{{\rm{m}}^{\rm{3}}}\). Tính khoảng cách từ \(C\) tới \(\left( {SAB} \right)\) 

A. \(\frac{{\sqrt 3 }}{2}{\rm{cm}}\).

Đáp án chính xác ✅

B. \(\frac{{\sqrt 5 }}{2}{\rm{cm}}\). 

C. \(\frac{{\sqrt 3 }}{4}{\rm{cm}}\).

D. \(\frac{{\sqrt 5 }}{4}{\rm{cm}}\).

Lời giải của giáo viên

verified HocOn247.com

Gọi I là trung điểm của \(SA\).

Tam giác \(SAB,\,\,SAC\) vuông tại \(B,C \Rightarrow IS = IA = IB = IC \Rightarrow I\) là tâm mặt cầu ngoại tiếp chóp \(S.ABC\).

Gọi \(H\) là trung điểm của \(BC\). Vì \(\Delta ABC\) vuông tại \(A \Rightarrow H\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

\( \Rightarrow IH \bot \left( {ABC} \right)\).

Gọi \(R\) là bán kính mặt cầu ngoại tiếp chóp \(S.ABC\). Theo bài ra ta có: \(\dfrac{4}{3}\pi {R^3} = \dfrac{{5\sqrt 5 \pi }}{6} \Leftrightarrow {R^3} = \dfrac{{5\sqrt 5 }}{8} = \dfrac{{\sqrt {125} }}{8} \Leftrightarrow R = \dfrac{{\sqrt 5 }}{2}\)

\( \Rightarrow IS = IA = IB = IC = \dfrac{{\sqrt 5 }}{2}\).

Xét tam giác vuông \(ABC\) có: \(BC = \sqrt {A{B^2} + A{C^2}}  = 2 \Rightarrow AH = 1\).

Xét tam giác vuông \(IAH\) có \(IH = \sqrt {I{A^2} - A{H^2}}  = \sqrt {\dfrac{5}{4} - 1}  = \dfrac{1}{2}\).

\(\begin{array}{l}{S_{\Delta ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}.1.\sqrt 3  = \dfrac{{\sqrt 3 }}{2}\\ \Rightarrow {V_{I.ABC}} = \dfrac{1}{3}IH.{S_{\Delta ABC}} = \dfrac{1}{3}.\dfrac{1}{2}.\dfrac{{\sqrt 3 }}{2} = \dfrac{{\sqrt 3 }}{{12}}\end{array}\)

Ta có: \(SI \cap \left( {ABC} \right) = A \Rightarrow \dfrac{{d\left( {S;\left( {ABC} \right)} \right)}}{{d\left( {I;\left( {ABC} \right)} \right)}} = \dfrac{{SA}}{{IA}} = 2\)

\( \Rightarrow \dfrac{{{V_{S.ABC}}}}{{{V_{S.IBC}}}} = 2 \Rightarrow {V_{S.ABC}} = 2{V_{I.ABC}} = 2.\dfrac{{\sqrt 3 }}{{12}} = \dfrac{{\sqrt 3 }}{6}\).

Xét tam giác vuông \(SAB\) cps \(IB = \dfrac{{\sqrt 5 }}{2} \Rightarrow SA = 2IB = \sqrt 5  \Rightarrow SB = \sqrt {S{A^2} - A{B^2}}  = 2\).

\( \Rightarrow {S_{\Delta SAB}} = \dfrac{1}{2}.1.2 = 1\).

Ta có \({V_{S.ABC}} = \dfrac{1}{3}d\left( {C;\left( {SAB} \right)} \right).{S_{\Delta SAB}} \Rightarrow d\left( {C;\left( {SAB} \right)} \right) = \dfrac{{3{V_{S.ABC}}}}{{{S_{\Delta SAB}}}} = \dfrac{{3.\dfrac{{\sqrt 3 }}{6}}}{1} = \dfrac{{\sqrt 3 }}{2}\).

Chọn A. 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp \(S.ABC\) có đáy là tam giác cân tại \(A\), \(AB = AC = a\), \(\widehat {BAC} = 120^\circ \). Tam giác \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính thể tích \(V\) của khối chóp \(S.ABC\). 

Xem lời giải » 2 năm trước 47
Câu 2: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(R\), có bảng biến thiên như sau: 

Mệnh đề nào sau đây là đúng ?

Xem lời giải » 2 năm trước 47
Câu 3: Trắc nghiệm

Trong không gian \(Oxyz\), lấy điểm \(C\)trên tia \(Oz\) sao cho \(OC = 1\). Trên hai tia \(Ox,Oy\) lần lượt  lấy hai điểm \(A,B\) thay đổi sao cho \(OA + OB = OC\). Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện \(O.ABC\)? 

Xem lời giải » 2 năm trước 46
Câu 4: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị như hình bên. Khẳng định nào sau đây là đúng?

Xem lời giải » 2 năm trước 45
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho \(A\left( { - 1;0;0} \right)\), \(B\left( {0;0;2} \right)\), \(C\left( {0; - 3;0} \right)\). Tính bán kính mặt cầu ngoại tiếp tứ diện \(OABC\) là 

Xem lời giải » 2 năm trước 43
Câu 6: Trắc nghiệm

Trong không gian tọa độ Oxyz, mặt phẳng song song với mặt phẳng (Oyz) và đi qua điểm \(K\left( {4; - 5;7} \right)\) có phương trình là 

Xem lời giải » 2 năm trước 43
Câu 7: Trắc nghiệm

Giới hạn \(\mathop {\lim }\limits_{n \to  + \infty } \dfrac{{1 + 2 + 3 + ... + \left( {n - 1} \right) + n}}{{{n^2}}}\) bằng

Xem lời giải » 2 năm trước 43
Câu 8: Trắc nghiệm

Xét các khẳng định saui) Nếu \(a > 2019\) thì \({a^x} > {2019^x}_{}^{}\,\,\,\forall x \in \mathbb{R}\)ii) Nếu \(a > 2019\) thì \({b^a} > {b^{2019}}_{}^{}\,\,\,\forall b>0\)iii) Nếu \(a > 2019\) thì \({\log _b}a > {\log _b}2019_{}^{}\,\,\,\forall b > 0,b \ne 1\)Số khẳng định đúng trong các khẳng định trên là: 

Xem lời giải » 2 năm trước 42
Câu 9: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau

Khẳng định nào sau đây là đúng?

Xem lời giải » 2 năm trước 42
Câu 10: Trắc nghiệm

Tìm nguyên hàm của hàm số \(y = {x^2} - 3x + \frac{1}{x}\). 

Xem lời giải » 2 năm trước 42
Câu 11: Trắc nghiệm

Hàm số \(y = {x^4} - {x^3} - x + 2019\)  có bao nhiêu điểm cực trị? 

Xem lời giải » 2 năm trước 42
Câu 12: Trắc nghiệm

Trong không gian tọa độ Oxyz, cho các điểm  \(A\left( {3;4;0} \right),B\left( {3;0; - 4} \right),C\left( {0; - 3; - 4} \right).\) Trục của đường tròn ngoại tiếp tam giác ABC đi qua điểm nào trong các điểm sau đây? 

Xem lời giải » 2 năm trước 41
Câu 13: Trắc nghiệm

Cho hàm số số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) trên \(\mathbb{R}\) như hình vẽ. Mệnh đề nào sau đây là đúng?

Xem lời giải » 2 năm trước 41
Câu 14: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\)có đồ thị như hình bên. Hàm số đã cho đồng biến trên khoảng

Xem lời giải » 2 năm trước 41
Câu 15: Trắc nghiệm

Số các số nguyên \(m\) để hàm số \(y = 3\sin x + 4\cos x - \left( {\left| m \right| - 6} \right)x\) đồng biến trên tập số thực là: 

Xem lời giải » 2 năm trước 41

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »