Câu hỏi Đáp án 2 năm trước 40

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A,  \(\widehat {ABC} = {30^0}\). SBC là tam giác đều cạnh a và mặt bên \(SBC\) vuông góc với đáy. Khoảng cách từ điểm C đến mặt phẳng (SAB) là: 

A. \(\sqrt 5 a\).   

B. \(\dfrac{3}{4}a\).       

C.  \(\dfrac{{\sqrt {39} a}}{{13}}\).       

Đáp án chính xác ✅

D. \(\dfrac{1}{{13}}a\). 

Lời giải của giáo viên

verified HocOn247.com

Gọi M, N lần lượt là trung điểm của BC, AB. Kẻ \(MH \bot SN,\,\,H \in SN\).

Tam giác SBC đều \(SM \bot BC\).

Mà \(\left( {SBC} \right) \bot \left( {ABC} \right),\,\,\left( {SBC} \right) \cap \left( {ABC} \right) = BC \Rightarrow SM \bot \left( {ABC} \right) \Rightarrow SM \bot AB\)

Ta có:  \(MN//AC\) (do MN là đường trung bình của tam giác ABC) mà \(AB \bot AC \Rightarrow MN \bot AB\) \( \Rightarrow AB \bot \left( {SMN} \right) \Rightarrow AB \bot MH\)

Mà \(MH \bot SN \Rightarrow MH \bot \left( {SAB} \right) \Rightarrow d\left( {M;\left( {SAB} \right)} \right) = MH \Rightarrow d\left( {C;\left( {SAB} \right)} \right) = 2MH\) (do M là trung điểm của BC)

\(\Delta ABC\) vuông tại A có \(\widehat {ABC} = {30^0} \Rightarrow AC = BC\sin {30^0} = \dfrac{a}{2} \Rightarrow MN = \dfrac{a}{4}\)

\(\Delta SBC\) đều, cạnh a \( \Rightarrow SM = \dfrac{{a\sqrt 3 }}{2}\)

\(\Delta SMN\) vuông tại M, \(MH \bot SN\)

\( \Rightarrow \dfrac{1}{{M{H^2}}} = \dfrac{1}{{S{M^2}}} + \dfrac{1}{{M{N^2}}} = \dfrac{1}{{{{\left( {\dfrac{{a\sqrt 3 }}{2}} \right)}^2}}} + \dfrac{1}{{{{\left( {\dfrac{a}{4}} \right)}^2}}} = \dfrac{4}{{3{a^2}}} + \dfrac{{16}}{{{a^2}}} = \dfrac{{52}}{{3{a^2}}} \Rightarrow MH = \sqrt {\dfrac{3}{{52}}} a\)

\( \Rightarrow d\left( {C;\left( {SAB} \right)} \right) = 2.\sqrt {\dfrac{3}{{52}}} a = \sqrt {\dfrac{3}{{13}}} a = \dfrac{{\sqrt {39} }}{{13}}a\).

Chọn: C

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Diện tích S của hình phẳng (H) giới hạn bởi hai đường cong \(y =  - {x^3} + 12x\) và \(y =  - {x^2}\) là: 

Xem lời giải » 2 năm trước 44
Câu 2: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết \(AB = BC = a\), \(AD = 2a,\,\)\(SA = \dfrac{{3a\sqrt 2 }}{2}\), \(SA \bot \left( {ABCD} \right)\). Gọi M, N theo thứ tự là trung điểm của SB, SA. Khoảng cách từ N đến mặt phẳng (MCD) bằng: 

Xem lời giải » 2 năm trước 42
Câu 3: Trắc nghiệm

Tập nghiệm S của bất phương trình \({\log _{\dfrac{1}{2}}}\left( {{x^2} - 3x + 2} \right) \ge  - 1\) là: 

Xem lời giải » 2 năm trước 42
Câu 4: Trắc nghiệm

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng?

Xem lời giải » 2 năm trước 41
Câu 5: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{5x + 4}}\) là 

Xem lời giải » 2 năm trước 41
Câu 6: Trắc nghiệm

Cho một cấp số cộng \(\left( {{u_n}} \right)\) có  \({u_1} = \dfrac{1}{2}\), \({u_2} = \dfrac{7}{2}\). Khi đó công sai d bằng: 

Xem lời giải » 2 năm trước 40
Câu 7: Trắc nghiệm

Cho hàm số bậc ba \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Hỏi đồ thị hàm số \(g\left( x \right) = \dfrac{{\left( {{x^2} - 4x + 4} \right)\sqrt {x - 1} }}{{x\left[ {{f^2}\left( x \right) - f\left( x \right)} \right]}}\) có bao nhiêu đường tiệm cận đứng?


 

 

Xem lời giải » 2 năm trước 40
Câu 8: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 16\) và điểm \(A\left( {1;2;3} \right)\). Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau cắt mặt cầu theo ba đường tròn. Gọi S là tổng diện tích của ba hình tròn đó. Khi đó S bằng:

Xem lời giải » 2 năm trước 40
Câu 9: Trắc nghiệm

Cho hình chóp đều \(S.ABCD\) có cạnh \(AB = a\), góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {ABC} \right)\) bằng \(45^0\). Thể tích khối chóp \(S.\,ABCD\) là

Xem lời giải » 2 năm trước 40
Câu 10: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + y - 2z + 4 = 0\). Một vectơ pháp tuyến của mặt phẳng (P) là: 

Xem lời giải » 2 năm trước 40
Câu 11: Trắc nghiệm

Cho số phức \(z = 2 + 5i\). Điểm biểu diễn số phức z trong mặt phẳng Oxy có tọa độ là: 

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Tìm họ nguyên hàm của hàm số \(f\left( x \right) = {x^2}{e^{{x^3} + 1}}\).   

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Trong các hàm số sau đây, hàm số nào đồng biến trên \(\mathbb{R}\)

Xem lời giải » 2 năm trước 38
Câu 14: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(f\left( 2 \right) = 16\), \(\int\limits_0^2 {f\left( x \right)dx}  = 4\). Tính tích phân \(I = \int\limits_0^1 {x.f'\left( {2x} \right)dx} \).

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho số phức z thỏa mãn \(\left( {1 + 2i} \right)z = 6 - 3i\). Phần thực của số phức z là: 

Xem lời giải » 2 năm trước 37

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »