Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết \(AB = BC = a\), \(AD = 2a,\,\)\(SA = \dfrac{{3a\sqrt 2 }}{2}\), \(SA \bot \left( {ABCD} \right)\). Gọi M, N theo thứ tự là trung điểm của SB, SA. Khoảng cách từ N đến mặt phẳng (MCD) bằng:
A. \(\dfrac{a}{3}\).
B. \(\dfrac{a}{4}\).
C. \(\dfrac{{4a}}{3}\).
D. \(\dfrac{{3a}}{4}\).
Lời giải của giáo viên
Gắn hệ trục tọa độ: \(A \equiv O\left( {0;0;0} \right),\,B\left( {1;0;0} \right),\,C\left( {1;1;0} \right),\,D\left( {0;2;0} \right)\), \(S\left( {0;0;\dfrac{{3\sqrt 2 }}{2}} \right) \Rightarrow M\left( {\dfrac{1}{2};0;\dfrac{{3\sqrt 2 }}{4}} \right),\,\,N\left( {0;0;\dfrac{{3\sqrt 2 }}{4}} \right)\)
\( \Rightarrow \overrightarrow {MC} = \left( {\dfrac{1}{2};1; - \dfrac{{3\sqrt 2 }}{4}} \right)\), lấy \(\overrightarrow a = 4\overrightarrow {MC} = \left( {2;4; - 3\sqrt 2 } \right)\)
\(\overrightarrow {CD} = \left( { - 1;1;0} \right)\), lấy \(\overrightarrow b = \left( { - 1;1;0} \right)\)
Mặt phẳng (MCD) có 1 VTPT \(\overrightarrow n = \dfrac{1}{{3\sqrt 2 }}.\left[ {\overrightarrow a ;\overrightarrow b } \right] = \left( {1;1;\sqrt 2 } \right)\), đi qua \(C\left( {1;1;0} \right)\) có phương trình là:
\(1\left( {x - 1} \right) + 1\left( {y - 1} \right) + \sqrt 2 \left( {z - 0} \right) = 0 \Leftrightarrow x + y + \sqrt 2 z - 2 = 0\)
\( \Rightarrow {d_{\left( {N;\left( {MNC} \right)} \right)}} = \dfrac{{\left| {0 + 0 + \sqrt 2 .\dfrac{{3\sqrt 2 }}{4} - 2} \right|}}{{\sqrt {1 + 1 + 2} }} = \dfrac{{\dfrac{1}{2}}}{2} = \dfrac{1}{4}\)
Vây, khoảng cách từ N đến mặt phẳng (MCD) bằng: \(\dfrac{1}{4}a\)
Chọn: B
CÂU HỎI CÙNG CHỦ ĐỀ
Diện tích S của hình phẳng (H) giới hạn bởi hai đường cong \(y = - {x^3} + 12x\) và \(y = - {x^2}\) là:
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng?
Tập nghiệm S của bất phương trình \({\log _{\dfrac{1}{2}}}\left( {{x^2} - 3x + 2} \right) \ge - 1\) là:
Họ nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{5x + 4}}\) là
Cho một cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = \dfrac{1}{2}\), \({u_2} = \dfrac{7}{2}\). Khi đó công sai d bằng:
Cho hàm số bậc ba \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Hỏi đồ thị hàm số \(g\left( x \right) = \dfrac{{\left( {{x^2} - 4x + 4} \right)\sqrt {x - 1} }}{{x\left[ {{f^2}\left( x \right) - f\left( x \right)} \right]}}\) có bao nhiêu đường tiệm cận đứng?
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 16\) và điểm \(A\left( {1;2;3} \right)\). Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau cắt mặt cầu theo ba đường tròn. Gọi S là tổng diện tích của ba hình tròn đó. Khi đó S bằng:
Cho hình chóp đều \(S.ABCD\) có cạnh \(AB = a\), góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {ABC} \right)\) bằng \(45^0\). Thể tích khối chóp \(S.\,ABCD\) là
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + y - 2z + 4 = 0\). Một vectơ pháp tuyến của mặt phẳng (P) là:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, \(\widehat {ABC} = {30^0}\). SBC là tam giác đều cạnh a và mặt bên \(SBC\) vuông góc với đáy. Khoảng cách từ điểm C đến mặt phẳng (SAB) là:
Tìm họ nguyên hàm của hàm số \(f\left( x \right) = {x^2}{e^{{x^3} + 1}}\).
Cho số phức \(z = 2 + 5i\). Điểm biểu diễn số phức z trong mặt phẳng Oxy có tọa độ là:
Trong các hàm số sau đây, hàm số nào đồng biến trên \(\mathbb{R}\)
Giá trị nhỏ nhất của hàm số \(y = \dfrac{{x + 3}}{{2x - 3}}\) trên đoạn \(\left[ {2;5} \right]\) bằng:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(f\left( 2 \right) = 16\), \(\int\limits_0^2 {f\left( x \right)dx} = 4\). Tính tích phân \(I = \int\limits_0^1 {x.f'\left( {2x} \right)dx} \).