Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\), tam giác \(ABC\) vuông tại \(B\). Biết \(SA = 2a\), \(AB = a\), \(BC = a\sqrt 3 \). Tính bán kính \(R\) của mặt cầu ngoại tiếp hình chóp đã cho.
A. \(R = a\sqrt 2 \)
B. \(R = 2a\sqrt 2 \)
C. R = 2a
D. R = a
Lời giải của giáo viên
Gọi \(O,\,\,I\) lần lượt là trung điểm của \(AC\) và \(SC\). Khi đó \(OI\) là đường trung bình của tam giác \(SAC\) nên \(OI\parallel SA\). Mà \(SA \bot \left( {ABC} \right) \Rightarrow OI \bot \left( {ABC} \right)\).
Tam giác \(ABC\) vuông tại \(B\) nên \(O\) là tâm đường tròn ngoại tiếp tam giác \(ABC\), mà \(OI \bot \left( {ABC} \right)\) nên \(OI\) chính là trục của \(\left( {ABC} \right)\), suy ra \(IA = IB = IC\,\,\,\left( 1 \right)\).
Lại có \(SA \bot \left( {ABC} \right)\) nên \(SA \bot AC\), do đó tam giác \(SAC\) vuông tại \(A\) nên \(I\) chính là tâm đường tròn ngoại tiếp tam giác \(SAC\), suy ra \(IS = IA = IC\,\,\,\left( 2 \right)\).
Từ (1) và (2) ta có \(IA = IB = IC = IS\), hay \(I\) là tâm mặt cầu ngoại tiếp chóp \(S.ABC\), và bán kính mặt cầu là \(R = IS = \frac{1}{2}SC\).
Áp dụng định lí Pytago trong tam giác vuông \(ABC\) ta có: \(AC = \sqrt {A{B^2} + B{C^2}} = 2a\).
Áp dụng định lí Pytago trong tam giác vuông \(SAC\) ta có: \(SC = \sqrt {S{A^2} + A{C^2}} = 2a\sqrt 2 \).
Vậy \(R = \frac{1}{2}SC = a\sqrt 2 \).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \frac{x}{{1 - x}}\,\,\left( C \right)\) và điểm \(A\left( { - 1;1} \right)\). Tìm \(m\) để đường thẳng \(d:\,\,y = mx - m - 1\) cắt \(\left( C \right)\) tại 2 điểm phân biệt \(M,\,\,N\) sao cho \(A{M^2} + A{N^2}\) đạt giá trị nhỏ nhất.
Cho khối nón có độ dài đường sinh bằng \(2a\) và bán kính đáy bằng \(a\). Tính thể tích của khối nón đã cho.
Tìm tập nghiệm \(S\) của bất phương trình \({3^{x + 1}} - \frac{1}{3} > 0\).
Tìm tham số \(m\) để tồn tại duy nhất cặp số \(\left( {x;y} \right)\) thỏa mãn đồng thời các điều kiện \({\log _{2019}}\left( {x + y} \right) \le 0\) và \(x + y + \sqrt {2xy + m} \ge 1\).
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A\left( {1; - 2;0} \right)\), \(B\left( {3;3;2} \right)\), \(C\left( { - 1;2;2} \right)\) và \(D\left( {3;3;1} \right)\). Độ dài đường cao của tứ diện \(ABCD\) hạ từ đỉnh \(D\) xuống mặt phẳng \(\left( {ABC} \right)\) bằng:
Cắt một hình trụ bởi mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng \(3a\). Tính diện tích toàn phần của hình trụ đã cho.
Khai triển nhị thức \({\left( {x + 2} \right)^{n + 5}}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(2019\) số hạng. Tìm \(n\).
Cho \(a,\,\,b\) là các số dương. Mệnh đề nào dưới đây đúng?
Cho hình phẳng \(D\) giới hạn bởi đường cong \(y = \sqrt {2 + \sin x} \), trục hoành và các đường thẳng \(x = 0\), \(x = \pi \). Khối tròn xoay \(D\) tạo thành khi quay \(D\) quanh trục hoành có thể tích \(V\) bằng bao nhiêu?
Gọi \(S\) là tập hợp các số tự nhiên có 7 chữ số, lấy ngẫu nhiên một số từ tập \(S\). Xác suất để số lấy được có tận cùng bằng \(3\) và chia hết cho \(7\) có kết quả gần nhất với số nào trong các số sau?
Trong không gian \(Oxyz\), cho hình thang cân \(ABCD\) có hai đáy \(AB,\,\,CD\) thỏa mãn \(CD = 2AB\) và diện tích bằng \(27\), đỉnh \(A\left( { - 1; - 1;0} \right)\), phương trình đường thẳng chứa cạnh \(CD\) là \(\frac{{x - 2}}{2} = \frac{{y + 1}}{2} = \frac{{z - 3}}{1}\). Tìm tọa độ điểm \(D\) biết hoành độ điểm \(B\) lớn hơn hoành độ điểm \(A\).
Cho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực của phương trình \(f\left( {x + 2019} \right) = 1\) là:
Cho phương trình \({\left( {\sqrt {2 - \sqrt 3 } } \right)^x} + {\left( {\sqrt {2 + \sqrt 3 } } \right)^x} = 4\). Gọi \({x_1},\,\,{x_2}\) \(\left( {{x_1} < {x_2}} \right)\) là hai nghiệm thực của phương trình. Khẳng định nào sau đây là đúng?
Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm \(A\left( {2;1; - 1} \right)\), \(B\left( { - 1;0;4} \right)\), \(C\left( {0; - 2; - 1} \right)\). Phương trình nào dưới đây là phương trình của mặt phẳng đi qua \(A\) và vuông góc \(BC\).
Cho \(\left| {iz - 2i + 1} \right| = 1\). Gọi \(M,\,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \(\left| {\overline z + 1 + i} \right|\). Tính \(M + m\)