Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Phạm Ngũ Lão
Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Phạm Ngũ Lão
-
Hocon247
-
50 câu hỏi
-
90 phút
-
53 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây:
Dựa vào đồ thị hàm số ta thấy: Đồ thị hàm số có TCN \(y = 2\) và TCĐ \(x = - 1\).
Do đó loại đáp án C và D.
Dễ thấy hàm số ở đáp án A: \(y = \frac{{2x + 2}}{{x + 1}} = \frac{{2\left( {x + 1} \right)}}{{x + 1}} = 2\) là hàm hằng nên không có đường tiệm cận.
Cho \(a,\,\,b\) là các số dương. Mệnh đề nào dưới đây đúng?
Các đáp án trên chỉ có đáp án A đúng: \(\log \left( {ab} \right) = \log a + \log b\).
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng:
Dựa vào BBT ta thấy hàm số có giá trị cực tiểu bằng \( - 2\).
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Dựa vào đồ thị hàm số ta thấy hàm số đã cho nghịch biến trên \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\).
Tập xác định \(D\) của hàm số \(y = {\left( {{x^3} - 8} \right)^{\frac{\pi }{2}}}\) là:
Vì \(\frac{\pi }{2} \notin \mathbb{Z}\) nên hàm số \(y = {\left( {{x^3} - 8} \right)^{\frac{\pi }{2}}}\) xác định \( \Leftrightarrow {x^3} - 8 > 0 \Leftrightarrow x > 2\).
Vậy tập xác định của hàm số là \(D = \left( {2; + \infty } \right)\).
Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm \(A\left( {2;1; - 1} \right)\), \(B\left( { - 1;0;4} \right)\), \(C\left( {0; - 2; - 1} \right)\). Phương trình nào dưới đây là phương trình của mặt phẳng đi qua \(A\) và vuông góc \(BC\).
Ta có: \(\overrightarrow {BC} = \left( {1; - 2; - 5} \right)\) là 1 VTPT của mặt phẳng đi qua \(A\) và vuông góc \(BC\).
Vậy phương trình mặt phẳng đi qua \(A\) và vuông góc \(BC\) là:
\(1\left( {x - 2} \right) - 2\left( {y - 1} \right) - 5\left( {z + 1} \right) = 0\)\( \Leftrightarrow x - 2y - 5z - 5 = 0\).
Một cấp số nhân hữu hạn có công bội \(q = - 3\), số hạng thứ ba bằng \(27\) và số hạng cuối bằng \(1594323\). Hỏi cấp số nhân đó có bao nhiêu số hạng?
Ta có: \({u_3} = {u_1}.{q^2}\)\( \Rightarrow 27 = {u_1}.{\left( { - 3} \right)^2}\) \( \Leftrightarrow {u_1} = 3\).
Giả sử số hạng thứ \(n\) là \({u_n} = 1594323\), khi đó ta có:
\(3.{\left( { - 3} \right)^{n - 1}} = 1594323\) \( \Leftrightarrow {\left( { - 3} \right)^{n - 1}} = 531441\) \( \Leftrightarrow n - 1 = 12\) \( \Leftrightarrow n = 13\).
Vậy \(1594323\) là số hạng thứ 13 hay cấp số nhân trên có 13 số hạng.
Mệnh đề nào sau đây sai?
Dễ thấy \(\int {{e^x}dx} = {e^x} + C\), \(\int {\left( {{x^2} - 1} \right)dx} = \frac{{{x^3}}}{3} - x + C\) là các mệnh đề đúng.
\(\int {\ln xdx} = \frac{1}{x} + C\) là mệnh đề sai (Lẫn lộn giữa nguyên hàm và đạo hàm).
Cách làm đúng: \(\int {\ln xdx} \)\( = x.\ln x - \int {x.\frac{1}{x}dx} + C\) \( = x.\ln x - x + C\)
Cho \(\int\limits_0^1 {f\left( x \right)dx} = - 2\) và \(\int\limits_0^1 {g\left( x \right)dx} = - 5\), khi đó \(\int\limits_0^1 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} \) bằng:
\(\int\limits_0^1 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} \)\( = \int\limits_0^1 {f\left( x \right)dx} + 3\int\limits_0^1 {g\left( x \right)dx} \) \( = - 2 + 3.\left( { - 5} \right) = - 17\).
Phần thực và phần ảo của số phức \(z = \left( {1 + 2i} \right)i\) lần lượt là:
\(z = \left( {1 + 2i} \right)i = i + 2{i^2}\)\( = i - 2 = - 2 + i\).
Vậy số phức đó có phần thực là \( - 2\) và phần ảo là \(1\).
Thể tích khối lập phương có cạnh \(2a\) bằng:
Thể tích khối lập phương là: \(V = {\left( {2a} \right)^3} = 8{a^3}\).
Cho khối nón có độ dài đường sinh bằng \(2a\) và bán kính đáy bằng \(a\). Tính thể tích của khối nón đã cho.
Chiều cao của khối nón là: \(h = \sqrt {{l^2} - {r^2}} = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 \).
Vậy thể tích khối nón là \(V = \frac{1}{3}\pi {r^2}h\)\( = \frac{1}{3}\pi .{a^2}.a\sqrt 3 = \frac{{\sqrt 3 \pi {a^3}}}{3}\)
Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow a \) thỏa mãn \(\overrightarrow a = 2\overrightarrow i + \overrightarrow k - 3\overrightarrow j \). Tọa độ của vectơ \(\overrightarrow a \) là:
\(\overrightarrow a = 2\overrightarrow i + \overrightarrow k - 3\overrightarrow j \)\( \Rightarrow \overrightarrow a = \left( {2; - 3;1} \right)\)
Trong không gian \(Oxyz\), cho đường thẳng \(d:\,\,\frac{{x - 2}}{3} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 3}}{2}\). Điểm nào sau đây không thuộc đường thẳng \(d\)?
Điểm \(M\left( { - 2;1;3} \right)\) không thuộc đường thẳng \(d\) vì \(\frac{{ - 2 - 2}}{3} \ne \frac{{1 + 1}}{{ - 1}} \ne \frac{{3 + 3}}{2}\).
Khai triển nhị thức \({\left( {x + 2} \right)^{n + 5}}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(2019\) số hạng. Tìm \(n\).
Khai triển nhị thức \({\left( {x + 2} \right)^{n + 5}}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(2019\) số hạng nên \(n + 5 = 2019 + 1\)\( \Leftrightarrow n = 2015\).
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Số nghiệm thực của phương trình \(f\left( x \right) + 1 = 0\) là:
Ta có: \(f\left( x \right) + 1 = 0 \Leftrightarrow f\left( x \right) = - 1\). Khi đó số nghiệm của phương trình là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = - 1\).
Dựa vào BBT ta thấy đường thẳng \(y = - 1\) cắt đồ thị hàm số tại 2 điểm phân biệt.
Vậy phương trình \(f\left( x \right) + 1 = 0\) có 2 nghiệm phân biệt.
Điểm biểu diễn của số phức \(z = 2019 + bi\) (\(b\) là số thực tùy ý) nằm trên đường thẳng có phương trình là:
Điểm biểu diễn của số phức \(z = 2019 + bi\) (\(b\) là số thực tùy ý) là \(M\left( {2019;b} \right)\).
Điểm \(M\left( {2019;b} \right)\) luôn thuộc đường thẳng \(x = 2019\) vói mọi \(b\) tùy ý.
Có bao nhiêu loại khối đa diện mà mỗi mặt của nó là một tam giác đều.
Các khối đa diện mà mỗi mặt của nó là một tam giác đều là:
- Khối \(\left\{ {3;3} \right\}\): Tứ diện đều.
- Khối \(\left\{ {3;4} \right\}\): Bát diện đều.
- Khối \(\left\{ {3;5} \right\}\): Khối 20 mặt đều.
Vậy có 3 khối đa diện mà mỗi mặt của nó là một tam giác đều.
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số \(y = \frac{{x - 2}}{{{x^2} - 4}}\) là:
TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 2;2} \right\}\).
Ta có: \(y = \frac{{x - 2}}{{{x^2} - 4}} = \frac{1}{{x + 2}}\).
Đồ thị hàm số có TCN \(y = 0\) và TCĐ \(x = - 2\).
Gọi \(M,\,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\) trên đoạn \(\left[ {3;5} \right]\). Tính \(M - m\).
TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có: \(y' = \frac{{ - 2}}{{{{\left( {x - 1} \right)}^2}}} < 0\,\,\forall x \in D\). Do đó \(y' < 0\,\,\,\forall x \in \left[ {3;5} \right]\).
Khi đó hàm số đã cho nghịch biến trên \(\left( {3;5} \right)\).
\( \Rightarrow M = \mathop {\max }\limits_{\left[ {3;5} \right]} y = y\left( 3 \right) = 2\), \(m = \mathop {\min }\limits_{\left[ {3;5} \right]} y = y\left( 5 \right) = \frac{3}{2}\).
Vậy \(M - m = 2 - \frac{3}{2} = \frac{1}{2}.\)
Cho hàm số \(f\left( x \right)\) có \(f'\left( x \right) = {x^{2017}}.{\left( {x - 1} \right)^{2018}}.{\left( {x + 1} \right)^{2019}},\)\(\forall x \in \mathbb{R}\). Hỏi hàm số đã cho có bao nhiêu điểm cực trị.
Ta có:
\(f'\left( x \right) = {x^{2017}}.{\left( {x - 1} \right)^{2018}}.{\left( {x + 1} \right)^{2019}}\) với \(\forall x \in \mathbb{R}\)
\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 1\end{array} \right.\)
Trong đó:
+ \(x = 0\) là nghiệm bội \(2017\) (là cực trị).
+ \(x = 1\) là nghiệm bội \(2018\) (không là cực trị).
+ \(x = - 1\) là nghiệm bội \(2019\) (là cực trị).
Vậy hàm số đã cho có 2 điểm cực trị.
Cho hàm số \(y = {\log _3}\left( {2x - 3} \right)\). Tính đạo hàm của hàm số đã cho tại điểm \(x = 2\).
TXĐ: \(D = \left( {\frac{3}{2}; + \infty } \right)\).
Ta có: \(y' = \frac{{\left( {2x - 3} \right)'}}{{\left( {2x - 3} \right)\ln 3}} = \frac{2}{{\left( {2x - 3} \right)\ln 3}}\).
Với \(x = 2 \in D\) thì \(y'\left( 2 \right) = \frac{2}{{\left( {2.2 - 3} \right)\ln 3}} = \frac{2}{{\ln 3}}\).
Cho phương trình \({\left( {\sqrt {2 - \sqrt 3 } } \right)^x} + {\left( {\sqrt {2 + \sqrt 3 } } \right)^x} = 4\). Gọi \({x_1},\,\,{x_2}\) \(\left( {{x_1} < {x_2}} \right)\) là hai nghiệm thực của phương trình. Khẳng định nào sau đây là đúng?
Ta có:
\(\begin{array}{l}{\left( {\sqrt {2 - \sqrt 3 } } \right)^x}.{\left( {\sqrt {2 + \sqrt 3 } } \right)^x} \\= {\left( {\sqrt {2 - \sqrt 3 } .\sqrt {2 + \sqrt 3 } } \right)^x}\\ = {\left( {\sqrt {\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)} } \right)^x} \\= {\left( {\sqrt {{2^2} - {{\left( {\sqrt 3 } \right)}^2}} } \right)^x} = 1\end{array}\)
Do đó nếu đặt \({\left( {\sqrt {2 + \sqrt 3 } } \right)^x} = t\,\,\left( {t > 0} \right)\) thì \({\left( {\sqrt {2 - \sqrt 3 } } \right)^x} = \frac{1}{t}\), khi đó phương trình trở thành:
\(\frac{1}{t} + t = 4 \Leftrightarrow {t^2} - 4t + 1 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}t = 2 + \sqrt 3 \\t = 2 - \sqrt 3 \end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}{\left( {\sqrt {2 + \sqrt 3 } } \right)^x} = 2 + \sqrt 3 \\{\left( {\sqrt {2 + \sqrt 3 } } \right)^x} = 2 - \sqrt 3 \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}{\left( {2 + \sqrt 3 } \right)^{\frac{1}{2}x}} = 2 + \sqrt 3 \\{\left( {2 + \sqrt 3 } \right)^{\frac{1}{2}x}} = {\left( {2 + \sqrt 3 } \right)^{ - 1}}\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}\frac{1}{2}x = 1\\\frac{1}{2}x = - 1\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 2\end{array} \right.\).
Do đó phương trình có 2 nghiệm \({x_1} = - 2,\,\,{x_2} = 2\).
Vậy \({x_1} + {x_2} = 0\).
Tìm tập nghiệm \(S\) của bất phương trình \({3^{x + 1}} - \frac{1}{3} > 0\).
\(\begin{array}{l}{3^{x + 1}} - \frac{1}{3} > 0 \Leftrightarrow {3^{x + 1}} > \frac{1}{3}\\ \Leftrightarrow {3^{x + 1}} > {3^{ - 1}} \Leftrightarrow x + 1 > - 1\\ \Leftrightarrow x > - 2\end{array}\)
Vậy tập nghiệm của bất phương trình là \(S = \left( { - 2; + \infty } \right)\).
Cho \(\int\limits_0^1 {\frac{{xdx}}{{{{\left( {x + 3} \right)}^2}}}} = a + b\ln 3 + c\ln 4\) với \(a,\,\,b,\,\,c\) là các số thực. Tính giá trị của \(a + b + c\).
\(\begin{array}{l}\int\limits_0^1 {\frac{{xdx}}{{{{\left( {x + 3} \right)}^2}}}} = \int\limits_0^1 {\frac{{x + 3 - 3}}{{{{\left( {x + 3} \right)}^2}}}dx} \\ = \int\limits_0^1 {\frac{{dx}}{{x + 3}}} - 3\int\limits_0^1 {\frac{{dx}}{{{{\left( {x + 3} \right)}^2}}}} \\ = \left. {\left( {\ln \left| {x + 3} \right| + \frac{3}{{x + 3}}} \right)} \right|_0^1\\ = \ln 4 + \frac{3}{4} - \ln 3 - 1\\ = - \frac{1}{4} - \ln 3 + \ln 4\end{array}\)
\( \Rightarrow a = - \frac{1}{4},\,\,b = - 1,\,\,c = 1\)
Vậy \(a + b + c = - \frac{1}{4} - 1 + 1 = - \frac{1}{4}\).
Cho số phức \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\) thỏa mãn \(a + \left( {b - 1} \right)i = \frac{{1 + 3i}}{{1 - 2i}}\). Giá trị nào dưới đây là môđun của \(z\).
Ta có:
\(\begin{array}{l}a + \left( {b - 1} \right)i = \frac{{1 + 3i}}{{1 - 2i}}\\ \Leftrightarrow a + bi - i = \frac{{1 + 3i}}{{1 - 2i}}\\ \Leftrightarrow a + bi = \frac{{1 + 3i}}{{1 - 2i}} + i\\ \Leftrightarrow z = \frac{{1 + 3i + i - 2{i^2}}}{{1 - 2i}}\\ \Leftrightarrow z = \frac{{1 + 4i + 2}}{{1 - 2i}}\\ \Leftrightarrow z = \frac{{3 + 4i}}{{1 - 2i}} = - 1 + 2i\end{array}\)
Vậy môđun của số phức \(z\) là \(\left| z \right| = \sqrt {{{\left( { - 1} \right)}^2} + {2^2}} = \sqrt 5 \).
Cho hình chóp \(S.ABCD\) có đáy là hình thoi cạnh \(a\), \(\angle BAD = {60^0}\), cạnh bên \(SA = a\) và \(SA\) vuông góc với mặt phẳng đáy. Tính khoảng cách từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\).
Ta có \(AB\parallel CD\,\,\left( {gt} \right) \Rightarrow AB\parallel \left( {SCD} \right)\) \( \Rightarrow d\left( {B;\left( {SCD} \right)} \right) = d\left( {A;\left( {SCD} \right)} \right)\).
Trong \(\left( {ABCD} \right)\) kẻ \(AH \bot CD\).
Vì \(\angle BAD = {60^0} \Rightarrow \angle ADC = {120^0}\) nên điểm \(H\) nằm ngoài đoạn thẳng \(CD\).
Trong \(\left( {SAH} \right)\) dựng \(AK \bot SH\,\,\left( {H \in SH} \right)\) ta có:
\(\left\{ \begin{array}{l}CD \bot AH\\CD \bot SA\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\end{array} \right.\) \( \Rightarrow CD \bot \left( {SAH} \right) \Rightarrow CD \bot AK\).
\(\left\{ \begin{array}{l}AK \bot SH\\AK \bot CD\end{array} \right. \Rightarrow AK \bot \left( {SCD} \right)\)\( \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = AK\).
Xét tam giác vuông \(AHD\) có \(\angle ADH = {180^0} - \angle ADC = {60^0}\), \(AD = a\) \( \Rightarrow AH = AD.sin{60^0} = \frac{{a\sqrt 3 }}{2}\).
Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AH\), suy ra tam giác \(SAH\) vuông tại \(A\), áp dụng hệ thức lượng trong tam giác vuông ta có: \(AK = \frac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }}\) \( = \frac{{a.\frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + \frac{{3{a^2}}}{4}} }} = \frac{{a\sqrt {21} }}{7}\).
Vậy \(d\left( {B;\left( {SCD} \right)} \right) = \frac{{a\sqrt {21} }}{7}\).
Cắt một hình trụ bởi mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng \(3a\). Tính diện tích toàn phần của hình trụ đã cho.
Gọi \(h\) và \(r\) lần lượt là chiều cao và bán kính đáy của hình trụ.
Cắt một hình trụ bởi mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh hình vuông bằng chiều cao hình trụ và gấp đôi bán kính đáy hình trụ, suy ra \(h = 2r = 3a \Rightarrow r = \frac{{3a}}{2}\).
Vậy diện tích toàn phần hình trụ là: \({S_{tp}} = 2\pi r\left( {r + h} \right)\)\( = 2\pi .\frac{{3a}}{2}\left( {\frac{{3a}}{2} + 3a} \right) = \frac{{27\pi {a^2}}}{2}\).
Trong không gian \(Oxyz\), mặt cầu tâm \(I\left( {1;2; - 1} \right)\) và cắt mặt phẳng \(\left( P \right):\,\,2x - y + 2z - 1 = 0\) theo một đường tròn có bán kính bằng \(\sqrt 8 \) có phương trình là:
Ta có: \(d\left( {I;\left( P \right)} \right) = \frac{{\left| {2.1 - 2 + 2.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }}\)\( = 1 = d\)
\( \Rightarrow \) Bán kính của mặt cầu là \(R = \sqrt {{r^2} + {d^2}} = \sqrt {8 + 1} = 3\).
Vậy phương trình mặt cầu cần tìm là: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 9.\)
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A\left( {1; - 2;0} \right)\), \(B\left( {3;3;2} \right)\), \(C\left( { - 1;2;2} \right)\) và \(D\left( {3;3;1} \right)\). Độ dài đường cao của tứ diện \(ABCD\) hạ từ đỉnh \(D\) xuống mặt phẳng \(\left( {ABC} \right)\) bằng:
Ta có: \(\overrightarrow {AB} = \left( {2;5;2} \right),\,\,\overrightarrow {AC} = \left( { - 2;4;2} \right)\) \( \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = \left( {2; - 8;18} \right)\).
\( \Rightarrow \left( {ABC} \right)\) đi qua \(A\left( {1; - 2;0} \right)\) và nhận \(\overrightarrow n \left( {1; - 4;9} \right)\) là 1 VTPT. Khi đó phương trình mặt phẳng \(\left( P \right)\) là: \(1\left( {x - 1} \right) - 4\left( {y + 2} \right) + 9\left( {z - 0} \right) = 0\) \( \Leftrightarrow x - 4y + 9z - 9 = 0\).
Vậy độ dài đường cao của tứ diện \(ABCD\) hạ từ đỉnh \(D\) xuống mặt phẳng \(\left( {ABC} \right)\) là:
\(d\left( {D;\left( {ABC} \right)} \right) = \frac{{\left| {3 - 4.3 + 9.1 - 9} \right|}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2} + {9^2}} }}\)\( = \frac{{9\sqrt 2 }}{{14}} = \frac{9}{{7\sqrt 2 }}\)
Tìm giá trị lớn nhất của hàm số \(f\left( x \right) = {e^{x + 1}} - 2\) trên đoạn \(\left[ {0;3} \right]\).
TXĐ: \(D = \mathbb{R}\).
Ta có: \(f'\left( x \right) = {e^{x + 1}} > 0\,\,\forall x \in \left[ {0;3} \right]\), do đó hàm số đồng biến trên \(\left( {0;3} \right)\).
Vậy \(\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 3 \right) = {e^4} - 2\).
Tìm tập hợp \(S\) tất cả các giá trị của tham số thực \(m\) để hàm số \(y = \frac{1}{3}{x^3} - \left( {m + 1} \right){x^2} + \left( {{m^2} + 2m} \right)x - 3\) nghịch biến trên khoảng \(\left( { - 1;1} \right)\).
TXĐ: \(D = \mathbb{R}\). Ta có: \(y' = {x^2} - 2\left( {m + 1} \right)x + {m^2} + 2m\).
Để hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\) thì \(y' \le 0\,,\,\forall x \in \left( { - 1;1} \right)\)
\( \Leftrightarrow {x^2} - 2\left( {m + 1} \right)x + {m^2} + 2m \le 0\) với \(\forall x \in \left( { - 1;1} \right)\).
Đặt \(f\left( x \right) = {x^2} - 2\left( {m + 1} \right)x + {m^2} + 2m\).
Để \(f\left( x \right) \le 0\,\,\forall x \in \left( { - 1;1} \right)\) thì phương trình \(f\left( x \right) = 0\) phải có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \({x_1} \le - 1 < 1 \le {x_2}\). Khi đó ta có:
\(\left\{ \begin{array}{l}\Delta ' > 0\\{x_1} \le - 1 < {x_2}\\{x_1} < 1 \le {x_2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {m + 1} \right)^2} - {m^2} - 2m > 0\\{x_1} + 1 \le 0 < {x_2} + 1\\{x_1} - 1 < 0 \le {x_2}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}1 > 0\\\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) \le 0\\\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) \le 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_1}{x_2} + \left( {{x_1} + {x_2}} \right) + 1 \le 0\\{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 \le 0\end{array} \right.\,\,\,\left( * \right)\)
Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m + 1} \right)\\{x_1}{x_2} = {m^2} + 2m\end{array} \right.\).
Khi đó \(\left( * \right) \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 2m + 2\left( {m + 1} \right) + 1 \le 0\\{m^2} + 2m - 2\left( {m + 1} \right) + 1 \le 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 4m + 3 \le 0\\{m^2} - 1 \le 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - 3 \le m \le - 1\\ - 1 \le m \le 1\end{array} \right. \Leftrightarrow m = - 1\).
Vậy \(S = \left\{ { - 1} \right\}.\)
Cho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực của phương trình \(f\left( {x + 2019} \right) = 1\) là:
Dựa vào đồ thị hàm số ta thấy: Đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 3 điểm phân biệt nên phương trình \(f\left( {x + 2019} \right) = 1\) có 3 nghiệm phân biệt \(\left[ \begin{array}{l}x + 2019 = a\\x + 2019 = b\\x + 2019 = c\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = a - 2019\\x = b - 2019\\x = c - 2019\end{array} \right.\).
Cho hình phẳng \(D\) giới hạn bởi đường cong \(y = \sqrt {2 + \sin x} \), trục hoành và các đường thẳng \(x = 0\), \(x = \pi \). Khối tròn xoay \(D\) tạo thành khi quay \(D\) quanh trục hoành có thể tích \(V\) bằng bao nhiêu?
Xét phương trình hoành độ giao điểm: \(\sqrt {2 + \sin x} = 0 \Leftrightarrow \sin x = - 2\) (vô nghiệm).
Khi đó ta có khối tròn xoay \(D\) tạo thành khi quay \(D\) quanh trục hoành có thể tích \(V\) bằng:
\(\begin{array}{l}V = \pi \int\limits_0^\pi {\left( {2 + \sin x} \right)dx} \\ = \left. {\pi \left( {2x - \cos x} \right)} \right|_0^\pi \\ = \pi \left( {2\pi + 1 + 1} \right)\\ = 2\pi \left( {\pi + 1} \right)\end{array}\)
Tính diện tích \(S\) của hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^3} - 3x + 2\) và \(y = x + 2\).
Xét phương trình hoành độ giao điểm: \({x^3} - 3x + 2 = x + 2\)\( \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\\x = - 2\end{array} \right.\)
Khi đó diện tích \(S\) của hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^3} - 3x + 2\) và \(y = x + 2\) là:
\(\begin{array}{l}V = \int\limits_{ - 2}^2 {\left| {{x^3} - 4x} \right|dx} \\ = \int\limits_{ - 2}^0 {\left| {{x^3} - 4x} \right|dx} + \int\limits_0^2 {\left| {{x^3} - 4x} \right|dx} \\ = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right|\\ = 4 + 4 = 8\end{array}\)
Xét số phức thỏa \(\left| z \right| = 3\). Biết rằng tập hợp điểm biểu diễn số phức \(w = \overline z + i\) là một đường tròn. Tìm tọa độ tâm của đường tròn đó.
Vì \(\left| z \right| = 3\) nên \(\left| {\overline z } \right| = 3\). Mà \(w = \overline z + i \Rightarrow \overline z = w - i\).
Khi đó ta có: \(\left| {w - i} \right| = 3\).
Vậy tập tập hợp điểm biểu diễn số phức \(w = \overline z + i\) là một đường tròn có tâm là điểm biểu diễn số phức \(i\), chính là điểm \(\left( {0;1} \right)\).
Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\), tam giác \(ABC\) vuông tại \(B\). Biết \(SA = 2a\), \(AB = a\), \(BC = a\sqrt 3 \). Tính bán kính \(R\) của mặt cầu ngoại tiếp hình chóp đã cho.
Gọi \(O,\,\,I\) lần lượt là trung điểm của \(AC\) và \(SC\). Khi đó \(OI\) là đường trung bình của tam giác \(SAC\) nên \(OI\parallel SA\). Mà \(SA \bot \left( {ABC} \right) \Rightarrow OI \bot \left( {ABC} \right)\).
Tam giác \(ABC\) vuông tại \(B\) nên \(O\) là tâm đường tròn ngoại tiếp tam giác \(ABC\), mà \(OI \bot \left( {ABC} \right)\) nên \(OI\) chính là trục của \(\left( {ABC} \right)\), suy ra \(IA = IB = IC\,\,\,\left( 1 \right)\).
Lại có \(SA \bot \left( {ABC} \right)\) nên \(SA \bot AC\), do đó tam giác \(SAC\) vuông tại \(A\) nên \(I\) chính là tâm đường tròn ngoại tiếp tam giác \(SAC\), suy ra \(IS = IA = IC\,\,\,\left( 2 \right)\).
Từ (1) và (2) ta có \(IA = IB = IC = IS\), hay \(I\) là tâm mặt cầu ngoại tiếp chóp \(S.ABC\), và bán kính mặt cầu là \(R = IS = \frac{1}{2}SC\).
Áp dụng định lí Pytago trong tam giác vuông \(ABC\) ta có: \(AC = \sqrt {A{B^2} + B{C^2}} = 2a\).
Áp dụng định lí Pytago trong tam giác vuông \(SAC\) ta có: \(SC = \sqrt {S{A^2} + A{C^2}} = 2a\sqrt 2 \).
Vậy \(R = \frac{1}{2}SC = a\sqrt 2 \).
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(C\), biết \(AB = 2a\), \(AC = a\), \(BC' = 2a\). Tính thể tích \(V\) của khối lăng trụ đã cho.
Tam giác \(ABC\) vuông tại \(C\) nên áp dụng định lí Pytago ta có: \(BC = \sqrt {A{B^2} - A{C^2}} = a\sqrt 3 \).
\( \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}AC.BC = \frac{1}{2}.a.a\sqrt 3 = \frac{{{a^2}\sqrt 3 }}{2}\).
Ta có: \(CC' \bot \left( {ABC} \right)\) nên \(CC' \bot BC\), suy ra tam giác \(BCC'\) vuông tại \(C\). Áp dụng định lí Pytago ta có: \(CC' = \sqrt {BC{'^2} - B{C^2}} = a\).
Vậy \({V_{ABC.A'B'C'}} = CC'.{S_{\Delta ABC}} = a.\frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{2}\).
Trong không gian \(Oxyz\), cho ba đường thẳng \(\left( {{d_1}} \right):\,\,\frac{{x - 3}}{2} = \frac{{y + 1}}{1} = \frac{{z - 2}}{{ - 2}}\), \(\left( {{d_2}} \right):\,\,\frac{{x + 1}}{3} = \frac{y}{{ - 2}} = \frac{{z + 4}}{{ - 1}}\) và \(\left( {{d_3}} \right):\,\,\frac{{x + 3}}{4} = \frac{{y - 2}}{{ - 1}} = \frac{z}{6}\). Đường thẳng song song \({d_3}\), cắt \({d_1}\) và \({d_2}\) có phương trình là:
Gọi \(\overrightarrow {{u_3}} = \left( {4; - 1;6} \right)\) là 1 VTCP của đường thẳng \({d_3}\).
Gọi đường thẳng cần tìm là \(d\). Vì \(d\parallel {d_3}\) nên \(d\) nhận \(\overrightarrow {{u_3}} = \left( {4; - 1;6} \right)\) là 1 VTCP.
Gọi \(\left\{ \begin{array}{l}A = d \cap {d_1}\\B = d \cap {d_2}\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}A\left( {3 + 2{t_1}; - 1 + {t_1};2 - 2{t_1}} \right)\\B\left( { - 1 + 3{t_2}; - 2{t_2}; - 4 - {t_2}} \right)\end{array} \right.\)
Khi đó ta có: \(\overrightarrow {AB} = \left( {3{t_2} - 2{t_1} - 4; - 2{t_2} - {t_1} + 1; - {t_2} + 2{t_1} - 6} \right)\) cũng là 1 VTCP của đường thẳng \(d\).
\( \Rightarrow \overrightarrow {AB} \) và \(\overrightarrow {{u_3}} \) là 2 vectơ cùng phương.
\(\begin{array}{l} \Leftrightarrow \frac{{3{t_2} - 2{t_1} - 4}}{4} = \frac{{ - 2{t_2} - {t_1} + 1}}{{ - 1}} = \frac{{ - {t_2} + 2{t_1} - 6}}{6}\\ \Leftrightarrow \left\{ \begin{array}{l} - 3{t_2} + 2{t_1} + 4 = - 8{t_2} - 4{t_1} + 4\\{t_2} - 2{t_1} + 6 = - 12{t_2} - 6{t_1} + 6\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}5{t_2} + 6{t_1} = 0\\13{t_2} + 4{t_1} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 0\\{t_2} = 0\end{array} \right.\\ \Rightarrow A\left( {3; - 1;2} \right);\,\,B\left( { - 1;0; - 4} \right)\end{array}\)
Vậy phương trình đường thẳng \(d\) đi qua \(A\left( {3; - 1;2} \right)\), nhận \(\overrightarrow {{u_3}} \left( {4; - 1;6} \right)\parallel \overrightarrow u \left( { - 4;1; - 6} \right)\) có phương trình là:
\(\frac{{x - 3}}{{ - 4}} = \frac{{y + 1}}{1} = \frac{{z - 2}}{{ - 6}}\)
Cho hàm số \(y = f\left( x \right)\) có đồ thị \(y = f'\left( x \right)\) như hình bên. Hỏi hàm số \(y = f\left( {3 - 2x} \right) + 2019\) nghịch biến trên khoảng nào sau đây?
Đặt \(g\left( x \right) = f\left( {3 - 2x} \right) + 2019\), khi đó ta có: \(g'\left( x \right) = - 2f'\left( {3 - 2x} \right)\).
Xét \(g'\left( x \right) < 0 \Leftrightarrow - 2f'\left( {3 - 2x} \right) < 0\)\( \Leftrightarrow f'\left( {3 - 2x} \right) > 0\)
\( \Leftrightarrow \left[ \begin{array}{l} - 1 < 3 - 2x < 1\\3 - 2x > 4\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l} - 4 < - 2x < - 2\\2x < - 1\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}1 < x < 2\\x < - \frac{1}{2}\end{array} \right.\)
Vậy hàm số \(g\left( x \right) = f\left( {3 - 2x} \right) + 2019\) nghịch biến trên \(\left( {1;2} \right)\) và \(\left( { - \infty ; - \frac{1}{2}} \right)\).
Cho hàm số \(y = f\left( x \right)\) có đồ thị đạo hàm \(y = f'\left( x \right)\) như hình bên. Khẳng định nào sau đây là đúng?
Đặt \(g\left( x \right) = f\left( x \right) - {x^2} - x + 2019\), khi đó ta có: \(g'\left( x \right) = f'\left( x \right) - 2x - 1\).
Xét \(g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) = 2x + 1\). Số nghiệm của phương trình là số giao điểm của đồ thị hàm số \(y = f'\left( x \right)\) và đường thẳng \(y = 2x + 1\).
Dựa vào đồ thị hàm số ta thấy \(x = 0\) là nghiệm của phương trình \(g'\left( x \right) = 0\) và qua nghiệm \(x = 0\) thì \(g'\left( x \right)\) đổi dấu từ dương sang âm.
(\(g'\left( x \right) > 0\) khi đồ thị hàm số \(y = f'\left( x \right)\) nằm phía trên đường thẳng \(y = 2x + 1\) và \(g'\left( x \right) < 0\) khi đồ thị hàm số \(y = f'\left( x \right)\) nằm phía dưới đường thẳng \(y = 2x + 1\)).
Vậy \(x = 0\) là điểm cực đại của hàm số \(g\left( x \right) = f\left( x \right) - {x^2} - x + 2019\).
Cho hàm số \(y = \frac{x}{{1 - x}}\,\,\left( C \right)\) và điểm \(A\left( { - 1;1} \right)\). Tìm \(m\) để đường thẳng \(d:\,\,y = mx - m - 1\) cắt \(\left( C \right)\) tại 2 điểm phân biệt \(M,\,\,N\) sao cho \(A{M^2} + A{N^2}\) đạt giá trị nhỏ nhất.
Xét phương trình hoành độ giao điểm:.
\(\begin{array}{l}\,\,\,\,\,\,\frac{x}{{1 - x}} = mx - m - 1\,\,\left( {x \ne 1} \right)\\ \Leftrightarrow x = \left( {mx - m - 1} \right)\left( {1 - x} \right)\\ \Leftrightarrow x = mx - m - 1 - m{x^2} + mx + x\\ \Leftrightarrow m{x^2} - 2mx + m + 1 = 0\,\,\,\left( * \right)\end{array}\)
Để đường thẳng \(d:\,\,y = mx - m - 1\) cắt \(\left( C \right)\) tại 2 điểm phân biệt \(M,\,\,N\) thì phương trình (*) phải có 2 nghiệm phân biệt khác \(1\) \( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = {m^2} - m\left( {m + 1} \right) > 0\\m - 2m + m + 1 \ne 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - m > 0\\1 \ne 0\end{array} \right. \Leftrightarrow m < 0\).
Khi đó hoành độ của hai điểm \(M,\,\,N\) là nghiệm của phương trình (*), áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_M} + {x_N} = 2\\{x_M}.{x_N} = \frac{{m + 1}}{m}\end{array} \right.\).
Ta có: \(\left\{ \begin{array}{l}{y_M} = m{x_M} - m - 1\\{y_N} = m{x_N} - m - 1\end{array} \right.\)
\( \Rightarrow {y_M} + {y_N}\)\( = \left( {{x_M} + {x_N}} \right) - 2m - 2 = - 2\)
Gọi \(I\) là trung điểm của \(MN\), ta có \(I\left( {1; - 1} \right)\) \( \Rightarrow A{I^2} = {2^2} + {\left( { - 2} \right)^2} = 8\).
\(\begin{array}{l}M{N^2} = {\left( {{x_M} - {x_N}} \right)^2} + {\left( {{y_M} - {y_N}} \right)^2}\\ = {\left( {{x_M} - {x_N}} \right)^2}\\ + {\left( {m{x_M} - m - 1 - m{x_N} + m + 1} \right)^2}\\ = {\left( {{x_M} - {x_N}} \right)^2} + {m^2}{\left( {{x_M} - {x_N}} \right)^2}\\ = \left( {1 + {m^2}} \right){\left( {{x_M} - {x_N}} \right)^2}\\ = \left( {1 + {m^2}} \right)\left[ {{{\left( {{x_M} + {x_N}} \right)}^2} - 4{x_M}{x_N}} \right]\\ = \left( {1 + {m^2}} \right)\left[ {4 - 4\frac{{m + 1}}{m}} \right]\\ = - 4\frac{{1 + {m^2}}}{m}\end{array}\)
Do \(M{N^2} > 0\) nên \(m < 0\).
Đặt \(T = A{M^2} + A{N^2}\)
Ta có:
\(\begin{array}{l}A{I^2} = \frac{{A{M^2} + A{N^2}}}{2} - \frac{{M{N^2}}}{4}\\ \Rightarrow 4A{I^2} = 2T - M{N^2}\\ \Leftrightarrow T = \frac{{4A{I^2} + M{N^2}}}{2}\\ \Leftrightarrow T = \frac{{4.8 - 4\frac{{1 + {m^2}}}{m}}}{2}\\ \Leftrightarrow T = 16 - 2\frac{{1 + {m^2}}}{m}\\ \Leftrightarrow T = \frac{{ - 2{m^2} + 16m - 2}}{m}\end{array}\)
Ta có:
\(\begin{array}{l}T' = \frac{{\left( { - 4m + 16} \right)m - \left( { - 2{m^2} + 16m - 2} \right)}}{{{m^2}}}\\T' = \frac{{ - 4{m^2} + 16m + 2{m^2} - 16m + 2}}{{{m^2}}}\\T' = \frac{{ - 2{m^2} + 2}}{{{m^2}}} = 0 \Leftrightarrow m = \pm 1\end{array}\)
BBT:
Từ BBT ta thấy \(\min T = 20 \Leftrightarrow m = - 1\) .
Cho hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai liên tục trên \(\mathbb{R}\). Biết rằng các tiếp tuyến của đồ thị \(y = f\left( x \right)\) tại các điểm có hoành độ \(x = - 1\), \(x = 0\), \(x = 1\) lần lượt tạo với chiều dương của trục \(Ox\) các góc \({30^0}\), \({45^0}\), \({60^0}\). Tính tích phân \(I = \int\limits_{ - 1}^0 {f'\left( x \right).f''\left( x \right)dx} + 4\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^3}.f''\left( x \right)dx} \).
Vì các tiếp tuyến của đồ thị \(y = f\left( x \right)\) tại các điểm có hoành độ \(x = - 1\), \(x = 0\), \(x = 1\) lần lượt tạo với chiều dương của trục \(Ox\) các góc \({30^0}\), \({45^0}\), \({60^0}\) nên ta có: \(y'\left( { - 1} \right) = \tan {30^0} = \frac{{\sqrt 3 }}{3}\), \(y'\left( 0 \right) = \tan {45^0} = 1\), \(y'\left( 1 \right) = \tan {60^0} = \sqrt 3 \).
Đặt \({I_1} = \int\limits_{ - 1}^0 {f'\left( x \right).f''\left( x \right)dx} \) , \({I_2} = \int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^3}.f''\left( x \right)dx} \).
Đặt \(t = f'\left( x \right)\) \( \Rightarrow dt = f''\left( x \right)dx\).
Đổi cận: \(\left\{ \begin{array}{l}x = - 1 \Rightarrow t = f'\left( { - 1} \right) = \frac{{\sqrt 3 }}{3}\\x = 0 \Rightarrow t = f'\left( 0 \right) = 1\\x = - 1 \Rightarrow t = f'\left( 1 \right) = \sqrt 3 \end{array} \right.\).
Khi đó ta có:
\(\begin{array}{l}{I_1} = \int\limits_{\frac{{\sqrt 3 }}{3}}^1 {tdt} = \left. {\frac{{{t^2}}}{2}} \right|_{\frac{{\sqrt 3 }}{3}}^1 = \frac{1}{2} - \frac{1}{6} = \frac{1}{3}\\{I_2} = \int\limits_1^{\sqrt 3 } {{t^3}dt} = \left. {\frac{{{t^4}}}{4}} \right|_1^{\sqrt 3 } = \frac{9}{4} - \frac{1}{4} = 2\end{array}\)
Vậy \(I = {I_1} + 4{I_2} = \frac{1}{3} + 8 = \frac{{25}}{3}\).
Cho \(\left| {iz - 2i + 1} \right| = 1\). Gọi \(M,\,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \(\left| {\overline z + 1 + i} \right|\). Tính \(M + m\)
Ta có:
\(\begin{array}{l}\left| {iz - 2i + 1} \right| = 1 \Leftrightarrow \left| {iz - 2i - {i^2}} \right| = 1\\ \Leftrightarrow \left| {i\left( {z - 2 - i} \right)} \right| = 1 \Leftrightarrow \left| i \right|\left| {z - 2 - i} \right| = 1\end{array}\)
\(\begin{array}{l} \Rightarrow \left| {z - 2 - i} \right| = 1\\ \Rightarrow \left| {\overline {z - 2 - i} } \right| = 1\\ \Leftrightarrow \left| {\overline z + \overline { - 2 - i} } \right| = 1\\ \Leftrightarrow \left| {\overline z - 2 + i} \right| = 1\\ \Leftrightarrow \left| {\overline z - \left( {2 - i} \right)} \right| = 1\end{array}\).
Suy ra tập hợp các điểm biểu diễn số phức \(\overline z \) là tâm đường tròn \(\left( C \right)\) tâm \(I\left( {2; - 1} \right)\), bán kính \(R = 1\)
Gọi \(M\) là điểm biểu diễn số phức \(\overline z \), \(N\left( { - 1; - 1} \right)\) là điểm biểu diễn số phức \(z = - 1 - i\).
Khi đó ta có: \(\left| {\overline z + 1 + i} \right| = \left| {\overline z - \left( { - 1 - i} \right)} \right| = MN\) với \(M \in \left( C \right)\).
Ta có: \(\left\{ \begin{array}{l}M{N_{\min }} = IN - R = 3 - 1 = 2\\M{N_{\max }} = IN + R = 3 + 1 = 4\end{array} \right.\) \( \Rightarrow m = 2,\,\,M = 4\).
Vậy \(M + m = 4 + 2 = 6\).
Gọi \(S\) là tập hợp các số tự nhiên có 7 chữ số, lấy ngẫu nhiên một số từ tập \(S\). Xác suất để số lấy được có tận cùng bằng \(3\) và chia hết cho \(7\) có kết quả gần nhất với số nào trong các số sau?
Số các số tự nhiên có 7 chữ số là \({9.10^6}\) số \( \Rightarrow n\left( \Omega \right) = {9.10^6}\).
Gọi A là biến cố: “Số lấy được có tận cùng bằng \(3\) và chia hết cho \(7\)”.
Gọi X là số có tận cùng bằng \(3\) và chia hết cho \(7\), khi đó \(X = 7.\overline {Y9} \) (\(\overline {Y9} \) là số tự nhiên có tận cùng bằng \(9\)).
Ta có:
\(\begin{array}{l}1000000 \le X \le 9999999\\ \Leftrightarrow 1000000 \le 7.\overline {Y9} \le 9999999\\ \Leftrightarrow 142858 \le \overline {Y9} \le 1428571\\ \Leftrightarrow 142858 \le 10Y + 9 \le 1428571\\ \Leftrightarrow 14285 \le Y \le 142856\end{array}\)
\( \Rightarrow \) Số các số \(Y\) là: \(\left( {142856 - 14285} \right):1 + 1 = 128572\).
\( \Rightarrow n\left( A \right) = 128572\).
Vậy \(P\left( A \right) = \frac{{128572}}{{{{9.10}^6}}} \approx 0,014\).
Cho hình chóp tứ giác đều \(S.ABCD\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng \(AC\) và vuông góc với mặt phẳng \(\left( {SCD} \right)\), cắt đường thẳng \(SD\) tại \(E\). Gọi \(V\) và \({V_1}\) lần lượt là thể tích khối chóp \(S.ABCD\) và \(D.ACE\), biết \(V = 5{V_1}\). Tính côsin của góc tạo bởi mặt bên và mặt đáy của hình chóp \(S.ABCD\).
Gọi \(O = AC \cap BD\), vì chóp \(S.ABCD\) đều \( \Rightarrow SO \bot \left( {ABCD} \right)\).
Gọi \(M\) là trung điểm của \(CD\), ta có: \(\left\{ \begin{array}{l}CD \bot OM\\CD \bot SO\end{array} \right.\)
\( \Rightarrow CD \bot \left( {SOM} \right)\).
Trong \(\left( {SOM} \right)\) kẻ \(OK \bot SM\,\,\left( {K \in SM} \right)\) ta có:
\(\left\{ \begin{array}{l}OK \bot SM\\OK \bot CD\end{array} \right.\) \( \Rightarrow OK \bot \left( {SCD} \right)\).
Mà \(O \in \left( P \right) \Rightarrow OK \subset \left( P \right) \Rightarrow K \in \left( P \right)\).
Trong \(\left( {SCD} \right)\) gọi \(E = CK \cap SD \Rightarrow E = \left( P \right) \cap SD\). Khi đó \(\left( P \right) \equiv \left( {ACE} \right)\).
Trong \(\left( {SBD} \right)\) kẻ \(EH\parallel SO\,\,\left( {H \in BD} \right)\), suy ra \(EH \bot \left( {ABCD} \right)\).
Ta có: \(\frac{{{V_1}}}{V} = \frac{{{V_{D.ACE}}}}{{{V_{S.ABCD}}}} = \frac{{\frac{1}{3}EH.{S_{ACD}}}}{{\frac{1}{3}SO.{S_{ABCD}}}} = \frac{{EH}}{{SO}}.\frac{1}{2}\) \( \Rightarrow \frac{1}{5} = \frac{{EH}}{{SO}}.\frac{1}{2} \Rightarrow \frac{{EH}}{{SO}} = \frac{2}{5} = \frac{{DE}}{{DS}}\)
Ta có: \(\left\{ \begin{array}{l}\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\\left( {SCD} \right) \supset SM \bot CD\\\left( {ABCD} \right) \supset OM \bot CD\end{array} \right.\)
\( \Rightarrow \angle \left( {\left( {SCD} \right);\left( {ABCD} \right)} \right)\)\( = \angle \left( {SM;OM} \right) = \angle SMO\)
Áp dụng định lí Menelaus trong tam giác \(SMD\) có:
\(\frac{{KS}}{{KM}}.\frac{{CM}}{{CD}}.\frac{{ED}}{{ES}} = 1\)\( \Leftrightarrow \frac{{KS}}{{KM}}.\frac{1}{2}.\frac{2}{3} = 1 \Leftrightarrow \frac{{KS}}{{KM}} = 3\)\( \Rightarrow \frac{{MK}}{{MS}} = \frac{1}{4}\).
Áp dụng hệ thức lượng trong tam giác vuông \(SOM\), đường cao \(OK\) ta có:
\(O{M^2} = MK.MS \Rightarrow \frac{{O{M^2}}}{{M{S^2}}} = \frac{{MK}}{{MS}} = \frac{1}{4}\) \( \Rightarrow \frac{{OM}}{{MS}} = \frac{1}{2} = \cos \angle SMO\).
Cho vật thể có mặt đáy là hình tròn có bán kính bằng 1, tâm trùng gốc tọa độ (hình vẽ). Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x \(\left( { - 1 \le x \le 1} \right)\) thì được thiết diện là một tam giác đều. Tính thể tích V của vật thể đó.
Độ dài cạnh của tam giác đều cắt trục Ox là \(a = 2.\sqrt {1 - {x^2}} \)
Diện tích tam giác đều đó là \(S = \frac{{{a^2}\sqrt 3 }}{4} = \frac{{4\left( {1 - {x^2}} \right)\sqrt 3 }}{4} = \sqrt 3 \left( {1 - {x^2}} \right)\)
Thể tích vật thể là \(V = \int\limits_{ - 1}^1 {Sdx} = \int\limits_{ - 1}^1 {\sqrt 3 \left( {1 - {x^2}} \right)dx} = \frac{{4\sqrt 3 }}{3}\)
Tìm tham số \(m\) để tồn tại duy nhất cặp số \(\left( {x;y} \right)\) thỏa mãn đồng thời các điều kiện \({\log _{2019}}\left( {x + y} \right) \le 0\) và \(x + y + \sqrt {2xy + m} \ge 1\).
\(\begin{array}{l} + )\,\,{\log _{2019}}\left( {x + y} \right) \le 0\\ \Leftrightarrow x + y \le 1 \Leftrightarrow x + y - 1 \le 0\,\,\,\,\left( 1 \right)\\ + )\,\,x + y + \sqrt {2xy + m} \ge 1\\ \Leftrightarrow \sqrt {2xy + m} \ge 1 - x - y\\ \Leftrightarrow 2xy + m \ge {\left( {1 - x - y} \right)^2}\\ \Leftrightarrow 2xy + m \ge {x^2} + {y^2} + 1 - 2x - 2y + 2xy\\ \Leftrightarrow {x^2} + {y^2} - 2x - 2y - m + 1 \le 0\\ \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} \le m + 1\,\,\,\left( 2 \right)\end{array}\)
\( \Rightarrow m + 1 \ge 0 \Leftrightarrow m \ge - 1\).
Với \(m = - 1\) ta có \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 0 \Leftrightarrow \left\{ \begin{array}{l}x = 1\\x = 1\end{array} \right.\).
Cặp số này không thỏa mãn \(\left( 1 \right)\).
Với \(m > - 1\).
Tập hợp các cặp số \(\left( {x;y} \right)\) thỏa mãn (1) là nửa mặt phẳng bờ đường thẳng \(x + y - 1 = 0\,\,\left( d \right)\) chứa điểm \(O\).
Tập hợp các cặp số \(\left( {x;y} \right)\) thỏa mãn (2) là hình tròn \(\left( C \right)\) tâm \(I\left( {1;1} \right)\), bán kính \(R = \sqrt {m + 1} \,\,\,\left( {m > - 1} \right)\).
Để tồn tại duy nhất cặp số \(\left( {x;y} \right)\) thỏa mãn (1) và (2) thì \(\left( d \right)\) phải tiếp xúc với \(\left( C \right)\).
\( \Rightarrow d\left( {I;d} \right) = R\) \( \Leftrightarrow \frac{{\left| {1 + 1 - 1} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \sqrt {m + 1} \Leftrightarrow \sqrt {m + 1} = \frac{1}{{\sqrt 2 }}\) \( \Leftrightarrow m + 1 = \frac{1}{2} \Leftrightarrow m = - \frac{1}{2}\,\,\left( {tm} \right)\).
Trong không gian \(Oxyz\), cho điểm \(A\left( {1;2;3} \right)\), mặt phẳng \(\left( P \right):\,\,2x + y + z + 5 = 0\). Mặt cầu tâm \(I\left( {a;b;c} \right)\) thỏa mãn đi qua \(A\), tiếp xúc với mặt phẳng \(\left( P \right)\) và có bán kính nhỏ nhất. Tính \(a + b + c\).
Giả sử mặt cầu tiếp xúc với \(\left( P \right)\) tại \(B\), khi đó \(I\) là giao điểm của đường thẳng qua \(B\) vuông góc với \(\left( P \right)\) và trung trực của đoạn thẳng \(AB\).
Gọi \(H\) là trung điểm của \(AB\).
Ta có: \(R = IB \ge HB = \frac{1}{2}AB \ge \frac{1}{2}AA'\).
Khi đó \({R_{\min }} = \frac{1}{2}AA' \Leftrightarrow B \equiv A'\).
Gọi \(d\) là đường thẳng đi qua \(A\) và vuông góc với \(\left( P \right)\), khi đó phương trình đường thẳng \(d\) là: \(\frac{{x - 1}}{2} = \frac{{y - 2}}{1} = \frac{{z - 3}}{1}\).
Gọi \(A'\) là hình chiếu của \(A\) lên \(\left( P \right)\), khi đó \(A' = d \cap \left( P \right)\) \( \Rightarrow A'\left( { - 3;0;1} \right)\).
Mặt cầu tâm \(I\left( {a;b;c} \right)\) thỏa mãn đi qua \(A\), tiếp xúc với mặt phẳng \(\left( P \right)\) và có bán kính nhỏ nhất khi và chỉ khi nhận \(AA'\) là đường kính, khi đó \(I\) là trung điểm của \(AA'\) và \(I\left( { - 1;1;2} \right)\).
\( \Rightarrow a = - 1,\,\,b = 1,\,\,c = 2\)\( \Rightarrow a + b + c = 2\)
Trong không gian \(Oxyz\), cho hình thang cân \(ABCD\) có hai đáy \(AB,\,\,CD\) thỏa mãn \(CD = 2AB\) và diện tích bằng \(27\), đỉnh \(A\left( { - 1; - 1;0} \right)\), phương trình đường thẳng chứa cạnh \(CD\) là \(\frac{{x - 2}}{2} = \frac{{y + 1}}{2} = \frac{{z - 3}}{1}\). Tìm tọa độ điểm \(D\) biết hoành độ điểm \(B\) lớn hơn hoành độ điểm \(A\).
Gọi \(\overrightarrow u \left( {2;2;1} \right)\) là 1 VTCP của đường thẳng \(CD\).
Vì \(AB\parallel CD\) nên \(\overrightarrow u \left( {2;2;1} \right)\) cũng là 1 VTCP của đường thẳng \(AB\).
Suy ra phương trình đường thẳng chứa cạnh \(AB\) là: \(\frac{{x + 1}}{2} = \frac{{y + 1}}{2} = \frac{z}{1}\).
Vì \(B \in AB \Rightarrow B\left( { - 1 + 2t; - 1 + 2t;t} \right)\) \(\left( { - 1 + 2t > - 1 \Leftrightarrow t > 0} \right)\).
Lấy \(M\left( {2; - 1;3} \right) \in CD\), ta có: \(\overrightarrow {AM} = \left( {3;0;3} \right) \Rightarrow \left[ {\overrightarrow {AM} ;\overrightarrow u } \right] = \left( {6; - 3; - 6} \right)\).
\(\begin{array}{l} \Rightarrow d\left( {A;CD} \right) = \frac{{\left| {\left[ {\overrightarrow {AM} ;\overrightarrow u } \right]} \right|}}{{\left| {\overrightarrow u } \right|}}\\ = \frac{{\sqrt {{6^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 6} \right)}^2}} }}{{\sqrt {{2^2} + {2^2} + {1^2}} }} = 3\\{S_{ABCD}} = \frac{{\left( {AB + CD} \right).d\left( {A;CD} \right)}}{2}\\ \Rightarrow 27 = \frac{{\left( {AB + 2AB} \right).3}}{2}\\ \Leftrightarrow 3AB = 18 \Leftrightarrow AB = 6\\ \Leftrightarrow A{B^2} = 36\\ \Leftrightarrow {\left( { - 1 + 2t + 1} \right)^2} + {\left( { - 1 + 2t + 1} \right)^2}\\ + {\left( {t - 0} \right)^2} = 36\\ \Leftrightarrow 4{t^2} + 4{t^2} + {t^2} = 36\\ \Leftrightarrow {t^2} = 4 \Leftrightarrow \left[ \begin{array}{l}t = 2\,\,\,\left( {tm} \right)\\t = - 2\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)
Vậy \(B\left( {3;3;2} \right)\).