Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB = a,BC = a\sqrt 3 ,SA = a\) và SA vuông góc với đáy ABCD. Tính \(\sin \alpha \), với \(\alpha \) là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC).
A. \(\sin \alpha = \frac{{\sqrt 7 }}{8}\)
B. \(\sin \alpha = \frac{{\sqrt 3 }}{2}\)
C. \(\sin \alpha = \frac{{\sqrt 2 }}{4}\)
D. \(\sin \alpha = \frac{{\sqrt 3 }}{5}\)
Lời giải của giáo viên
ABCD là hình chữ nhật nên BD = 2a, ta có AD // (SBC) nên suy ra \(d\left[ {D,\left( {SBC} \right)} \right] = d\left[ {A,\left( {SBC} \right)} \right] = AH\) với \(AH \bot SB\). Tam giác SAB vuông cân tại A nên H là trung điểm của SB suy ra \(AH = \frac{{a\sqrt 2 }}{2}\)
Vậy \(\sin \widehat {BD,\left( {SBC} \right)} = \frac{{d\left[ {D,\left( {SBC} \right)} \right]}}{{BD}} = \frac{{d\left[ {A,\left( {SBC} \right)} \right]}}{{BD}} = \frac{{\frac{{a\sqrt 2 }}{2}}}{{2a}} = \frac{{\sqrt 2 }}{4}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho cấp số cộng (un) có số hạng tổng quát là un = 3n - 2. Tìm công sai d của cấp số cộng.
Tính đạo hàm của hàm số \(y = \tan \left( {\frac{\pi }{4} - x} \right)\):
Cho hàm số y = f(x) xác định trên R và hàm số y = f’(x) có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số \(y = f\left( {{x^2} - 3} \right)\).
Giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số \(y = \frac{{\sin x + 2\cos x + 1}}{{\sin x + \cos x + 2}}\) là
Trên mặt phẳng tọa độ Oxy, cho tam giác ABC biết \(A\left( {1;3} \right),B\left( { - 2; - 2} \right),C\left( {3;1} \right)\). Tính cosin góc A của tam giác.
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Cho cấp số nhân (un) có u1 = -3, công bội q = -2. Hỏi -192 là số hạng thứ mấy của (un) ?
Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x - y + 1 = 0. Phép tịnh tiến theo \(\overrightarrow v \) nào sau đây biến đường thẳng d thành chính nó?
Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, \(AA' = \frac{{3a}}{2}\). Biết rằng hình chiếu vuông góc của A' lên (ABC) là trung điểm BC. Tính thể tích V của khối lăng trụ đó.
Tiệm cận ngang của đồ thị hàm số \(y = \frac{{x - 3}}{{x - 1}}\) là đường thẳng có phương trình?
Cho hình chóp đều S.ABCD, cạnh đáy bằng a, góc giữa mặt bên và mặt đáy là 60°. Tính khoảng cách từ điểm B đến mặt phẳng (SCD).
Cho tập \(A = \left\{ {0;2;4;6;8} \right\}\); \(B = \left\{ {3;4;5;6;7} \right\}\). Tập A \ B là
Cho phương trình:
\({\sin ^3}x + 2\sin x + 3 = \left( {2{{\cos }^3}x + m} \right)\sqrt {2{{\cos }^3}x + m - 2} + 2{\cos ^3}x + {\cos ^2}x + m\).
Có bao nhiêu giá trị nguyên của tham số m để phương trình trên có đúng 1 nghiệm \(x \in \left[ {0;\frac{{2\pi }}{3}} \right)\)?
Đồ thị hàm số \(y = \frac{{5x + 1 - \sqrt {x + 1} }}{{{x^2} + 2x}}\) có tất cả bao nhiêu đường tiệm cận?