Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a. Biết rằng ASB = ASD = 900, mặt phẳng chứa AB và vuông góc với (ABCD) cắt SD tại N. Tìm giá trị lớn nhất của thể tích tứ diện DABN.
A. \(\frac{{2{a^3}}}{3}\)
B. \(\frac{{2\sqrt 3 {a^3}}}{3}\)
C. \(\frac{{4{a^3}}}{3}\)
D. \(\frac{{4\sqrt 3 {a^3}}}{3}\)
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
rong không gian với hệ toạ độ Oxyz Cho tam giác ABC với \(A\left( {1;2;1} \right);B\left( { - 3;0;3} \right);C\left( {2;4; - 1} \right)\) . Tìm toạ độ điểm D sao cho tứ giác ABCD là hình bình hành ?
Cho hàm số y = f(x) lien tục trên R thoả mãn \(f'(x) + 2x.f(x) = {e^{ - {x^2}}}\forall x \in R\) và f(0) = 0. Tính f(1)
Cho hàm số y = f(x) có đạo hàm trên R và có đồ thị hàm số y =f’(x) như hình bên. Hàm số y = f(3 – x) đồng biến trên khoảng nào dưới đây?
Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên:
Khẳng định nào sai?
Cho bất phương trình \(m{.9^{2{x^2} - x}} - (2m + 1){6^{2{x^2} - x}} + m{a^{2{x^2} - x}} \le 0\) . Tìm m để bất phương trinh nghiệm đúng \(\forall x \ge \frac{1}{2}\)
Cho khối chóp tam giác đều SABCD có cạnh đáy là a, các mặt bên tạo với đáy một góc 600. Tính thể tích khối chóp đó
Tính đạo hàm của hàm số \(y = \frac{{x + 1}}{{\ln x}}(x > 0,x \ne 1)\)
Trong không gian với hệ toạ độ Oxyz cho hai vectơ \(\overrightarrow a ( - 2; - 3;1)\) và \(\overrightarrow b (1;0;1)\).Tính \(\cos (\overrightarrow a ;\overrightarrow b )\)
Tìm tập nghiệm S của phương trình \({9^{{x^2} - 3x + 2}} = )
Tính tổng tất cả các giá trị của m biết đồ thị hàm số \(y = {x^3} - 2m{x^2} + (m + 3)x + 4\) và đường thẳng y = x + 4 cắt nhau tại 3 điểm phân biệt A(0;4), B, C sao cho diện tích tam giác IBC bằng \(8\sqrt 2 \) với I(1; 3)
Tìm họ nguyên hàm của hàm số \(f(x) = \cos x - 2x.\)
Gọi K là tập nghiệm của bất phương trình \({7^{2x + \sqrt {x + 1} }} - {7^{2 + \sqrt { + 1} }} + 2018x \le 2018\). Biết rẳng tập hợp tất cả các giá trị của tham số m sao cho hàm số \(y = 2{x^3} - 3(m + 2){x^2} + 6(2m + 3)x - 3m + 5\) đồng biến trên K là với a, b là các số thực. Tính S = a + b
Cho hàm số f(x) thoả mãn \(f'(x) = (x + 1){e^x}\) và f(0) = 1 . Tính f(2)
Tìm tất cả các giá trị thực của tham số m để hàm số \(y = {x^3} - 3{x^2} + mx + 2\) đồng biến trên R.
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ.
Hỏi hàm số y = f(f(x)) có bao nhiêu điểm cực trị ?