Lời giải của giáo viên
Gọi O là tâm của tứ giác đáy.
\( \Rightarrow \frac{1}{2}OA = \frac{1}{2}\sqrt {A{D^2} + A{B^2}} = \frac{1}{2}\sqrt {8{a^2}} = a\sqrt 2 \)
Khi đó ta có: \(SO \bot \left( {ABCD} \right)\)
=> SO là trục của đường tròn ngoại tiếp tứ giác ABCD.
Trong mặt phẳng (SOA), vẽ đường trung trực của cạnh SA, cắt SO tại I.
=> I là tâm mặt cầu ngoại tiếp hình chóp.
Ta có: \(SO \bot \left( {ABCD} \right)\)
\(\begin{array}{l}
\Rightarrow \frac{{SN}}{{SO}} = \frac{{SI}}{{SA}} \Leftrightarrow SI = \frac{{SN.SA}}{{SO}}\\
\Leftrightarrow SI = \frac{{SN.SA}}{{\sqrt {S{A^2} - A{O^2}} }} = \frac{{2a.a}}{{\sqrt {4{a^2} - 2{a^2}} }} = \frac{{2{a^2}}}{{a\sqrt 2 }} = a\sqrt 2
\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right) = \frac{{x - {m^2}}}{{x + 8}}\) với m là tham số thực. Giả sử m0 là giá trị dương của tham số m để hàm số có giá trị nhỏ nhất trên đoạn [0;3] bằng -3. Giá trị m0 thuộc khoảng nào trong các khoảng cho dưới đây?
Có tất cả bao nhiêu giá trị nguyên của tham số để phương trình \({\log _{\sqrt 2 }}\left( {x - 1} \right) = {\log _2}\left( {mx - 8} \right)\) có hai nghiệm phân biệt?
Cho khối lăng trụ ABC.A’B’C’ có thể tích bằng 72 cm3. Gọi M là trung điểm của đoạn thẳng BB’. Tính thể tích khối tứ diện ABCM.
Phương trình \(\left( {{2^x} - 5} \right)\left( {{{\log }_2}x - 3} \right) = 0\) có hai nghiệm \({x_1},{x_2}\) (với \({x_1} < {x_2}\) . Tính giá trị của biểu thức \(K = {x_1} + 3{x_2}\)
Hàm số \(y = \frac{{{x^3}}}{3} - 3{x^2} + 5x - 2\) nghịch biến trên khoảng nào dưới đây?
Cho hàm số \(y = \frac{{x + 2}}{{2x + 3}}\) có đồ thị (C). Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C), biết d cắt trục hoành tại A và cắt trục tung tại B sao cho tam giác OAB cân tại O, với O là gốc tọa độ. Tính a + b
Gọi R,l,h lần lượt là bán kính đáy, độ dài đường sinh, chiều cao của hình nón (N). Diện tích xung quanh Sxq của hình nón là
Cho tứ diện ABCD có AB,AC,AD đôi một góc vuông, AB =4cm, AC =5cm, AD= 3cm. Thể tích khối tứ diện ABCD bằng
Cho hàm số y = f(x) có bảng biến thiên như sau:
Tìm tất cả giá trị thực của tham số m sao cho phương trình f(x) = m có đúng hai nghiệm.
Tìm tập xác định của hàm số \(y = \frac{1}{{1 - \ln x}}\)
Mặt cầu có bán kính a thì có diện tích xung quang bằng
Hàm số nào sau đây nghịch biến trên mỗi khoảng xác định của nó?
Cho khối chóp tứ giác đều S.ABCD có thể tích bằng a3 và đáy ABCD là hình vuông cạnh a. Tính \(cos\alpha \) với \(\alpha \) là góc giữa mặt bên và mặt đáy
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018;2019] để hàm số \(y = m{x^4} + \left( {m + 1} \right){x^2} + 1\) có đúng một điểm cực đại?
Biết rằng đồ thị hàm số \(y = {x^3} - 4{x^2} + 5x - 1\) cắt đồ thị hàm số y = 1 tại hai điểm phân biệt A và B. Tính độ dài đoạn bằng AB.