Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60o. Thể tích của khối cầu ngoại tiếp khối chóp S.ABCD là:
A. \(\frac{{4\pi {a^3}}}{3}.\)
B. \(\frac{{\pi {a^3}\sqrt 2 }}{3}.\)
C. \(\frac{{8\pi {a^3}\sqrt 6 }}{9}.\)
D. \(\frac{{8\pi {a^3}\sqrt 6 }}{{27}}.\)
Lời giải của giáo viên
Gọi \(O=AC\cap BD\), suy ra \(SO\bot \left( ABCD \right)\).
Ta có \(\left( \widehat{SB,\left( ABCD \right)} \right)=\left( \widehat{SB,OB} \right)=\widehat{SBO}\Rightarrow \widehat{SBO}={{60}^{o}}\).
Trong \(\Delta SOB\), ta có \(SO=OB.\tan \widehat{SBO}=\frac{a\sqrt{6}}{2}\).
Ta có SO là trục của hình vuông ABCD.
Trong mặt phẳng \(\left( SOB \right)\), kẻ đường trung trực d của đoạn SB.
Gọi \(I=SO\cap d\Rightarrow \left\{ \begin{align} & I\in SO \\ & I\in d \\ \end{align} \right.\)
\(\Rightarrow \left\{ \begin{align} & IA=IB=IC=ID \\ & IS=IB \\ \end{align} \right.\Rightarrow IA=IB=IC=ID=IS=R.\)
Xét \(\Delta SBD\) có \(\left\{ \begin{align} & SB=SD \\ & \widehat{SBD}=\widehat{SBO}={{60}^{o}} \\ \end{align} \right.\Rightarrow \Delta\) SBD đều.
Do đó d cũng là đường trung tuyến của \(\Delta SBD\). Suy ra I là trọng tâm \(\Delta SBD\).
Bán kính mặt cầu \(R=SI=\frac{2}{3}SO=\frac{a\sqrt{6}}{3}\). Suy ra \(V=\frac{4}{3}\pi {{R}^{3}}=\frac{8\pi {{a}^{3}}\sqrt{6}}{27}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxy cho điểm \(M\left( {2;1; - 3} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z - 3 = 0\). Tìm tọa độ hình chiếu vuông góc H của M trên (P).
Giá trị nhỏ nhất của hàm số \(y=x+\frac{9}{x}\) trên đoạn \(\left[ 2;4 \right]\) là:
Cho tứ diện SABC và hai điểm M, N lần lượt thuộc các cạnh SA, SB sao cho \(\frac{SM}{AM}=\frac{1}{2}, \frac{SN}{BN}=2\). Mặt phẳng \(\left( P \right)\) đi qua hai điểm M, N và song song với cạnh SC, cắt AC, BC lần lượt tại L, K. Tính tỉ số thể tích \(\frac{{{V}_{SCMNKL}}}{{{V}_{SABC}}}\).
Cho tứ diện ABCD. Trong tam giác ABD vẽ đường trung tuyến BI và trọng tâm G. Lấy M thuộc đoạn thẳng BC. Tỉ số \(\frac{CM}{CB}\) phải bằng mấy để GM//(ACD)?
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\). Hàm số luôn đồng biến trên R khi nào?
Trong không gian với hệ tọa độ Oxyz,cho đường thẳng điểm \(I\left( -1;-1;-1 \right)\) và mặt phẳng \(\left( P \right):2x-y+2z=0\). Viết phương trình mặt cầu \(\left( S \right)\) tâm I và tiếp xúc với \(\left( P \right)\)
Hình chiếu song song của một hình vuông không thể là hình nào trong các hình sau:
Phương trình \({9^{ - 2{x^2} - 3x}} + {2.3^{ - 2{x^2} - 3x}} - 3 = 0\).
Vectơ pháp tuyến của đường thẳng d đi qua điểm phân biệt A(a;0) và B(0;b) là:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 3;0;0 \right),\ B\left( 0;-4;0 \right),\ C\left( 0;0;4 \right).\) Viết phương trình mặt phẳng \(\left( R \right)\) đi qua ba điểm \(A,\ B,\ C.\)
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):2x-mz-2=0\) và \(\left( Q \right):x+y+2z+1=0\) . Tìm m để hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) vuông góc với nhau.
Nghiệm phương trình \(\frac{1}{{{\sin }^{2}}x}+\sqrt{3}.\cot x-1=0\) là:
Gọi d là đường thẳng đi qua điểm \(A\left( -2;-1;1 \right)\) và song song với mặt phẳng \(\left( P \right):2x+y+z-5=0,\) cắt trục tung tại điểm B. Tìm tọa độ của B.