Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và chiều cao bằng \(a\sqrt 2 .\) Tính khoảng cách từ tâm O của đáy ABCD đến một mặt bên theo a.
A. \(d = \frac{{a\sqrt 5 }}{2}\)
B. \(d = \frac{{a\sqrt 3 }}{2}\)
C. \(d = \frac{{2a\sqrt 5 }}{3}\)
D. \(d = \frac{{a\sqrt 2 }}{3}\)
Lời giải của giáo viên
Ta có: \(SO \bot (ABCD)\)
Gọi M là trung điểm của BC .
Kẻ: \(\left\{ \begin{array}{l}
OM \bot BC\\
SO \bot BC
\end{array} \right. \Rightarrow BC \bot (SOM) \Rightarrow BC \bot OK\) (1)
Mà \(OK \bot SM\) (2) (cách dựng)
Từ (1) và (2) \( \Rightarrow OK \bot (SBC)\)
Hay \(OK = d\left( {O;(SBC)} \right)\)
Áp dụng hệ thức lượng trong tam giác vuông cho tam giác \(\Delta SOM\) ta có:
\(\frac{1}{{O{K^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{M^2}}} = \frac{1}{{2{a^2}}} + \frac{1}{{\frac{{a{}^2}}{4}}} = \frac{9}{{2{a^2}}}\)
\(\Rightarrow O{K^2} = \frac{{2{a^2}}}{9} \Rightarrow OK = \frac{{a\sqrt 2 }}{3}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho đa thức \(f\left( x \right) = {\left( {1 + 3x} \right)^n} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_n}{x^n}\left( {n \in {N^*}} \right).\) Tìm hệ số \(a^3\) biết rằng \({a_1} + 2{a_2} + ... + n{a_n} = 49152n.\)
Cho tích phân \(\int\limits_1^2 {\frac{{\ln x}}{{{x^2}}}dx} = \frac{b}{c} + a\ln 2\) với a là số thực, b và c là các số nguyên dương, đồng thời \(\frac{b}{c}\) là phân số tối giản. Tính giá trị của biểu thức \(P = 2a + 3b + c\)
Tìm họ nguyên hàm của hàm số \(y = {x^2} - {3^x} + \frac{1}{x}.\)
Tìm hệ số góc của tiếp tuyến của đồ thị hàm số \(y = \frac{{3 - 4x}}{{x - 2}}\) tại điểm có tung độ \(y = - \frac{7}{3}\)
Tìm hệ số của số hạng không chứa x trong khai triển \({\left( {\frac{x}{2} + \frac{4}{x}} \right)^{18}}\) với \(x \ne 0\)
Tính diện tích S của hình phẳng (H) giới hạn bởi các đường cong \(y = - {x^3} + 12x\) và \(y = - {x^2}\)
Tính giới hạn \(L = \lim \frac{{{n^3} - 2n}}{{3{n^2} + n - 2}}.\)
Cho hình lăng trụ tam giác đều ABC.A'B'C' có \(AB = 2a,AA' = a\sqrt 3 .\) Tính thể tích V của khối lăng trụ ABC.A'B'C' theo a?
Cho hàm số \(y=f(x)\) có bảng biến thiên như bên dưới. Mệnh đề nào dưới đây Sai?
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a, \(AA' = \frac{{3a}}{2}.\) Biết rằng hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) là trung điểm của cạnh BC. Tính thể tích V của khối lăng
trụ đó theo a.
Cho chiếc trống như hình vẽ, có đường sinh là nửa elip được cắt bởi trục lớn với độ dài trục lơn bằng 80cm, độ dài trục bé bằng 60cm. Tính thể tích V của trống (kết quả làm tròn đến hàng đơn vị)
Gieo đồng thời hai con súc sắc cân đối và đồng chất. Tính xác suất P để hiệu số chấm trên các mặt xuất hiện của hai con súc sắc bằng 2.
Cho hàm số \(y = \frac{1}{3}{x^3} - 2m{x^2} + \left( {m - 1} \right)x + 2{m^2} + 1\) (m là tham số). Xác định khoảng cách lớn nhất từ gốc tọa độ O(0;0) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số trên.
Tìm giá trị thực của tham số m để hàm số \(y = {x^3} - 3{x^2} + mx\) đạt cực đại tại x = 0
Tìm các giá trị cực đại của hàm số \(y = {x^3} - 3{x^2} - 9x + 1\)