Cho hình hộp chữ nhật ABCD.A'B'C'D' có \(AB=A{{A}^{'}}=a,AD=2a\), (tham khảo hình bên).
Góc giữa đường thẳng CA' và mặt phẳng (ABCD) là \(\alpha \). Khi đó \(\tan \alpha \) bằng
A. \(\frac{{\sqrt 5 }}{5}\)
B. \(\sqrt 5 \)
C. \(\frac{{\sqrt 3 }}{3}\)
D. \(\sqrt 3 \)
Lời giải của giáo viên
Ta có \(CA' \cap \left( {ABCD} \right) = C\)
Mặt khác \(AA' \bot (ABCD) \Rightarrow \widehat {\left( {AA';(ABCD)} \right)} = \widehat {ACA'} = \alpha \Rightarrow \tan \alpha = \frac{{AA'}}{{AC}} = \frac{a}{{a\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với \(A\left( 1;1;1 \right); B\left( -1;1;0 \right); C\left( 1;3;2 \right)\). Đường trung tuyến xuất phát từ đỉnh A của tam giác ABC nhận vectơ \(\overrightarrow{a}\) nào dưới đây là một vectơ chỉ phương?
Cho \(\int\limits_{2}^{5}{f\left( x \right)\text{d}x}=10\). Khi đó \(\int\limits_{5}^{2}{\left[ 2-4f\left( x \right) \right]\text{d}x}\) bằng
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết SA=3a, tính thể tích V của khối chóp S.ABCD.
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng qua điểm \(M\left( 2;-3;4 \right)\) và nhận \(\overrightarrow{n}=\left( -2;4;1 \right)\) làm vectơ pháp tuyến.
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình tham số của đường thẳng đi qua hai điểm \(A\left( 1;0;1 \right)\) và \(B\left( 3;2;-1 \right)\).
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu \(\left( S \right)\) có tâm \(I\left( -1;2;1 \right)\) và đi qua điểm A(0;4;-1) là.
Thể tích khối nón có chiều cao h, bán kính đường tròn đáy r là:
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 0 \right\}\) thỏa mãn \({f}'\left( x \right)=\frac{x+1}{{{x}^{2}}}, f\left( -2 \right)=\frac{3}{2}\) và \(f\left( 2 \right)=2\ln 2-\frac{3}{2}\). Giá trị của biểu thức \(f\left( -1 \right)+f\left( 4 \right)\) bằng
Có tất cả bao nhiêu giá trị nguyên của y để phương trình \(\ln \left( {{\log }_{5}}y+\ln \left( {{\log }_{5}}y+\sin x \right) \right)=\sin x\) có nghiệm?
Tìm số nghiệm nguyên dương của bất phương trình \({\left( {\frac{1}{5}} \right)^{{x^2} - 2x}} \ge \frac{1}{{125}}\)
Nghiệm của phương trình \({2^{2x - 1}} = \frac{1}{4}\) là
Một hình trụ có bán kính đáy r=5cm, chiều cao h=7cm. Diện tích xung quanh của hình trụ này là:
Cho hàm số bậc ba y=f(x) có đồ thị là đường cong hình bên.
Biết f(x) đạt cực tiểu tại x=1 và f(x)+1 và f(x)-1 lần lượt chia hết cho \({{(x-1)}^{2}}\) và \({{(x+1)}^{2}}\). Gọi \({{S}_{1}},{{S}_{2}}\) là diện tích hai hình phẳng được gạch trong hình bên. Tính \({{S}_{1}}+{{S}_{2}}\).
Đồ thị hàm số \(y={{x}^{4}}-2{{x}^{2}}+1\) cắt trục hoành tại bao nhiêu điểm?