Cho hình lăng trụ \(ABCD.A'B'C'D'\) có hình chiếu \(A'\) lên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm của \(AB,\,ABCD\) là hình thoi cạnh \(2a,\,\,\angle ABC = {60^0};\,BB'\) tạo với đáy một góc \({30^0}\). Tính thể tích hình lăng trụ \(ABCD.A'B'C'D'\) ?
A. \(2{a^3}\)
B. \({a^3}\sqrt 3 \)
C. \(\frac{{2{a^3}}}{3}\)
D. \({a^3}\)
Lời giải của giáo viên
Gọi \(H\) là trung điểm của \(AB\) ta có \(A'H \bot \left( {ABCD} \right)\).
Trong \(\left( {ABB'A'} \right)\) kẻ \(B'K//A'H\,\,\left( {K \in AH} \right)\) ta có \(B'K \bot \left( {ABCD} \right)\)
\( \Rightarrow \angle \left( {BB';\left( {ABCD} \right)} \right) = \angle \left( {BB';BK} \right) = \angle B'BK = {30^0}\).
Dễ thấy \(A'B'KH\) là hình bình hành \(\left( {A'B'//HK,\,\,A'H//B'K} \right) \Rightarrow HK = A'B' = 2a\).
Mà \(BH = \frac{1}{2}AB = a \Rightarrow BK = a\).
Xét tam giác vuông \(B'BK\) ta có : \(B'K = BK.\tan {30^0} = \frac{{a\sqrt 3 }}{3}\).
Xét \(\Delta ABC\) ta có : \(\left\{ \begin{array}{l}AB = BC\,\,\left( {gt} \right)\\\angle ABC = {60^0}\,\,\left( {gt} \right)\end{array} \right. \Rightarrow \Delta ABC\) đều cạnh \(2a\).
\( \Rightarrow {S_{\Delta ABC}} = \frac{{{{\left( {2a} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \Rightarrow {S_{ABCD}} = 2{S_{\Delta ABC}} = 2{a^2}\sqrt 3 \).
Vậy \({V_{ABCD.A'B'C'D'}} = B'K.{S_{ABCD}} = \frac{{a\sqrt 3 }}{3}.2{a^2}\sqrt 3 = 2{a^3}\).
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Giá trị lớn nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 35\) trên \(\left[ { - 4;\,4} \right]\) là
Cho hàm số \(y = \frac{3}{{2 - x}}\). Chọn phát biểu đúng?
Hàm số \(y = f\left( x \right) = - \frac{{{x^4}}}{4} + 2{x^2} + 6\) có bao nhiêu điểm cực đại?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\) , cạnh \(SA\) vuông góc với mặt phẳng đáy, \(SB = a\sqrt 3 .\) Tính góc giữa \(SC\) và mặt phẳng đáy.
Chị Hân hàng tháng gửi vào ngân hàng \(1.500.000\) đồng, với lãi suất \(0,8\% \) một tháng. Sau 1 năm chị Hân rút cả vốn lẫn lãi về mua vàng thì số chỉ vàng mua được ít nhất là bao nhiêu? Biết giá vàng tại thời điểm mua là \(3.648.000\) đồng/chỉ.
Tìm hệ số của \({x^4}\) trong khai triển \({\left( {1 + x + 4{x^2}} \right)^{10}}\) thành đa thức.
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,\,BC = 2a,\,AC' = 3a.\) Điểm \({\rm N}\) thuộc cạnh \(BB'\) sao cho \(BN = 2NB',\) điểm \(M\) thuộc cạnh \(DD'\) sao cho \(D'M = 2MD.\) Mặt phẳng \(\left( {A'M{\rm N}} \right)\) chia hình hộp chữ nhật làm hai phần, tính thể tích phần chứa điểm \(C'.\)
Cho \({\log _2}5 = a\) và \({\log _3}5 = b.\) Khi đó, \({\log _6}5\) tính theo \(a\) và \(b\) là:
Cho hàm số \(y = f\left( x \right) = {x^3} - 5{x^2} + 2\) có đồ thị \(\left( C \right)\) . Có bao nhiêu tiếp tuyến của \(\left( C \right)\) đi qua điểm \(A\left( {0;2} \right)?\)
Cho hàm số \(y = {x^3} - 3m{x^2} + 4{m^3}.\) Với giá trị nào của tham số \(m\) để đồ thị hàm số có hai điểm cực trị \(A,\;B\) sao cho \(AB = \sqrt {20} ?\)
Cho hình chóp tứ giác đều \(S.ABCD,\) cạnh đáy có độ dài \(r\sqrt 2 ,\) chiều cao \(h\) . Xét hình nón \(\left( {\rm N} \right)\) ngoại tiếp khối chóp. Gọi \({V_1},\,{V_2}\) lần lượt là thể tích hình nón \(\left( {\rm N} \right)\) và thể tích khối cầu nội tiếp \(\left( {\rm N} \right)\) . Tìm tỉ số \(\frac{h}{r}\) sao cho \(\frac{{{V_1}}}{{{V_2}}}\) đạt giá trị nhỏ nhất?
Cho hình chóp \(SABC\) có đáy \(ABC\) là tam giác đều cạnh \(a.\) Biết \(SA \bot \left( {ABC} \right)\) và \(SA = 2a.\) Mặt phẳng \(\left( P \right)\) qua \(B\) vuông góc với \(SC.\) Diện tích thiết diện của hình chóp cắt bởi mặt phẳng \(\left( P \right)\) là:
Phương trình \({\sin ^2}x - \left( {2 + m} \right)\,\sin x + 2m = 0\) có nghiệm khi tham số \(m\) thỏa mãn điều kiện
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đồ thị hàm số \(f'\left( x \right)\) như hình vẽ. Hàm số \(f\left( x \right)\) có mấy điểm cực trị?