Cho hình lăng trụ tam giác đều ABC.A'B'C' có đáy ABC là tam giác vuông tại A và AB = AC = a. Biết góc giữa hai đường thẳng AC' và BA' bằng 60°. Thể tích của khối lăng trụ ABC.A'B'C' bằng
A. \(a^3\)
B. \(2a^3\)
C. \(\frac{{{a^3}}}{3}\)
D. \(\frac{{{a^3}}}{2}\)
Lời giải của giáo viên
Gọi D là đỉnh thứ tư của hình bình hành A'B'C'D'.
Do \(\left\{ \begin{array}{l}
A'B' = A'C'\\
\angle B'A'C' = 90^\circ
\end{array} \right. \Rightarrow A'B'DC'\) là hình vuông.
\( \Rightarrow AC'//BD \Rightarrow \angle \left( {AC';BA'} \right) = d\left( {BD;BA'} \right) = 60^\circ \) và B'D = a.
Gọi \(O = A'D \cap B'C' \Rightarrow O\) là trung điểm của A'D.
\(\Delta A'B'C'\) vuông cân tại \(A' \Rightarrow A'O = \frac{{a\sqrt 2 }}{2} \Rightarrow A'D = a\sqrt 2 \).
Đặt \(BB' = x \Rightarrow A'B = \sqrt {{x^2} + {a^2}} ;BD = \sqrt {{x^2} + {a^2}} \).
TH1: \(\angle A'BD = 60^\circ \).
Áp dụng định lí cosin trong tam giác A'BD ta có:
\(A'{D^2} = A'{B^2} + B{D^2} - 2A'B.BD.\cos 60^\circ \Rightarrow 2{a^2} = 2{x^2} + 2{a^2} - 2\left( {{x^2} + {a^2}} \right)\frac{1}{2}\)
\( \Leftrightarrow 2{x^2} = {x^2} + {a^2} \Leftrightarrow {x^2} = {a^2} \Leftrightarrow x = a\)
\( \Rightarrow {V_{ABC.A'B'C'}} = BB'.{S_{\Delta ABC}} = a.\frac{1}{2}{a^2} = \frac{{{a^3}}}{2}\)
TH2: \(\angle A'BD = 120^\circ \).
Áp dụng định lí cosin trong tam giác A'BD ta có:
\(A'{D^2} = A'{B^2} + B{D^2} - 2A'B.BD.\cos 120^\circ \Rightarrow 2{a^2} = 2{x^2} + 2{a^2} + 2\left( {{x^2} + {a^2}} \right)\frac{1}{2}\)
\( \Leftrightarrow 0 = 3{x^2} + 2{a^2} \Leftrightarrow x = a = 0\) (vo li)
Vậy \({V_{ABC.A'B'C'}} = \frac{{{a^3}}}{2}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right) = {x^2} - \left( {2m - 1} \right){x^2} + \left( {2 - m} \right)x + 2\). Tìm tất cả các giá trị thực của tham số m để hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 cực trị.
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, \(\angle BSA = 60^\circ \). Tính thể tích V của khối chóp S.ABCD?
Đồ thị sau là đồ thị của hàm số nào trong bốn hàm số cho dưới đây
Hàm số \(f\left( x \right) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + ... + C_{2019}^{2019}{x^{2019}}\) có bao nhiêu điểm cực trị?
Gọi S là tập hợp các giá trị thực của tham số m để phương trình \({4^x} - m{.2^x} + 2m + 1 = 0\) có nghiệm. Tập R\S có bao nhiêu giá trị nguyên?
Số giá trị nguyên của tham số \(m \in \left[ { - 10;10} \right]\) để bất phương trình \(\sqrt {3 + x} + \sqrt {6 - x} - \sqrt {18 + 3x - {x^2}} \le {m^2} - m + 1\) nghiệm đúng \(\forall x \in \left[ { - 3;6} \right]\) là
Cho hàm số \(y=f(x)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}\left( {x - 2} \right)\). Tìm khoảng nghịch biến của đồ thị hàm số \(y=f(x)\).
Cho hàm số \(y = \frac{{1 - x}}{{{x^2} - 2mx + 4}}\). Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có ba đường tiệm cận?
Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi M, N lần lượt là trung điểm của SB, SC. Biết \(\left( {AMN} \right) \bot \left( {SBC} \right)\). Thể tích của khối chóp S.ABC bằng
Tìm các giá trị thực của tham số m để hàm số \(f\left( x \right) = {x^3} + 3{x^2} - \left( {{m^2} - 3m + 2} \right)x + 5\) đồng biến trên khoảng (0;2)
Trong không gian, cho hình chóp S.ABC có SA, AB, BC đôi một vuông góc với nhau và SA = a, SB = b, SC = c. Mặt cầu đi qua S, A, B, C có bán kính bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB cân tại S có SA = SB = 2a nằm trong mặt phẳng vuông góc với đáy ABCD. Gọi \(\alpha \) là góc giữa SD và mặt phẳng đáy (ABCD). Mệnh đề nào sau đây đúng?
Một khối pha lê gồm một hình cầu (H1) bán kính R và một hình nón (H2) có bán kính đáy R và đường sinh lần lượt là r, l thỏa mãn \(r = \frac{1}{2}l\) và \(l = \frac{3}{2}R\) xếp chồng lên nhau (hình vẽ). Biết tổng diện tích mặt cầu (H1) và diện tích toàn phần của hình nón (H2) là 91 cm2. Tính diện tích của khối cầu (H1).
Cho hàm số \(y=f(x)\) xác định, liên tục trên và có bảng biến thiên:
Mệnh đề nào sau đây đúng?
Cho hàm số \(f(x)>0\) với \(x \in R,f\left( 0 \right) = 1\) và \(f\left( x \right) = \sqrt {x + 1} .f'\left( x \right)\) với mọi \(x \in R\). Mệnh đề nào dưới đây đúng?