Câu hỏi Đáp án 2 năm trước 38

Cho hình lăng trụ tứ giác đều \(ABCD.{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\) cạnh đáy bằng 1 và chiều cao bằng x. Tìm x để góc tạo bởi đường thẳng \({{B}_{1}}D\) và \(\left( {{B}_{1}}{{D}_{1}}C \right)\) đạt giá trị lớn nhất.

A. \(x = \sqrt 2 \)

B. x = 1

Đáp án chính xác ✅

C. x = 0,5

D. x = 2

Lời giải của giáo viên

verified HocOn247.com

Gọi O, \({{O}_{1}}\) lần lượt là tâm hình vuông ABCD và \({{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\); I là trung điểm của \(O{{O}_{1}}; H\) là hình chiếu vuông góc của I trên \({{O}_{1}}C\).

Ta có \({{B}_{1}}{{D}_{1}}\bot \left( {{O}_{1}}IH \right) \Rightarrow IH\bot {{B}_{1}}{{D}_{1}}\) mà \(IH\bot {{O}_{1}}C \Rightarrow IH\bot \left( {{B}_{1}}{{D}_{1}}C \right)\). Suy ra góc tạo bởi đường thẳng \({{B}_{1}}D\) và \(\left( {{B}_{1}}{{D}_{1}}C \right)\) là \(\varphi =\widehat{I{{B}_{1}}H}\).

Ta có \({{B}_{1}}I=\frac{{{B}_{1}}D}{2} =\frac{\sqrt{{{x}^{2}}+2}}{2}; \frac{1}{4I{{H}^{2}}}=\frac{1}{{{O}_{1}}{{O}^{2}}}+\frac{1}{O{{C}^{2}}}=\frac{1}{{{x}^{2}}}+2 \Rightarrow IH=\frac{x}{2\sqrt{2{{x}^{2}}+1}}\).

Suy ra \(\tan \varphi =\frac{IH}{{{B}_{1}}I}=\frac{\frac{x}{2\sqrt{2{{x}^{2}}+1}}}{\frac{\sqrt{{{x}^{2}}+2}}{2}}=\frac{x}{\sqrt{2{{x}^{2}}+1}\sqrt{{{x}^{2}}+2}}\)

Do \(2{{x}^{2}}+1\ge 3\sqrt[3]{{{x}^{4}}}\) và \({{x}^{2}}+2\ge 3\sqrt[3]{{{x}^{2}}}\) nên \(\tan \varphi \le \frac{1}{3}\). Đẳng thức xảy ra khi x=1.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho V là thể tích khối nón tròn xoay có bán kính đáy r và chiều cao h.  V được cho bởi công thức nào sau đây:

Xem lời giải » 2 năm trước 46
Câu 2: Trắc nghiệm

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \(\left( \alpha  \right):2x-3z+2=0\). Vectơ nào dưới đây là vectơ pháp tuyến của \(\left( \alpha  \right)\)?

Xem lời giải » 2 năm trước 43
Câu 3: Trắc nghiệm

Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có \(AB=1,AC=2,A{A}'=3\) và \(\widehat{BAC}=120{}^\circ \). Gọi M, N lần lượt là các điểm trên cạnh \(B{B}', C{C}'\) sao cho \(BM=3{B}'M, CN=2{C}'N\). Tính khoảng cách từ điểm M đến mặt phẳng \(\left( A'BN \right)\).

Xem lời giải » 2 năm trước 41
Câu 4: Trắc nghiệm

Có tất cả bao nhiêu số dương a thỏa mãn đẳng thức \({{\log }_{2}}a+{{\log }_{3}}a+{{\log }_{5}}a={{\log }_{2}}a.{{\log }_{3}}a.{{\log }_{5}}a\)

Xem lời giải » 2 năm trước 41
Câu 5: Trắc nghiệm

Diện tích hình phẳng được giới hạn bởi đồ thị của hàm số y=f(x) liên tục trên đoạn \(\text{ }\!\![\!\!\text{ }a;b\text{ }\!\!]\!\!\text{ }\), trục hoành và hai đường thẳng x=a, x=b được tính theo công thức

Xem lời giải » 2 năm trước 39
Câu 6: Trắc nghiệm

Gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm của phương trình \({{z}^{2}}-2z+6=0\). Trong đó \({{z}_{1}}\) có phần ảo âm. Giá trị biểu thức \(M=|{{z}_{1}}|+|3{{z}_{1}}-{{z}_{2}}|\) là:

Xem lời giải » 2 năm trước 39
Câu 7: Trắc nghiệm

Xét các số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1, 3, 5, 7, 9. Tính xác suất để tìm được một số không bắt đầu bởi 135.

Xem lời giải » 2 năm trước 39
Câu 8: Trắc nghiệm

Khối chóp S.ABCD có đáy ABCD là hình thoi cạnh a. SA=SB=SC=a, Cạnh SD thay đổi. Thể tích lớn nhất của khối chóp S.ABCD là:

Xem lời giải » 2 năm trước 38
Câu 9: Trắc nghiệm

Cho hình trụ có hai đường tròn đáy \(\left( O;R \right)\) và \(\left( {O}';R \right)\), chiều cao \(h=\sqrt{3}R\). Đoạn thẳng AB có hai đầu mút nằm trên hai đường tròn đáy hình trụ sao cho góc hợp bởi AB và trục của hình trụ là \(\alpha =30{}^\circ \). Thể tích tứ diện \(ABO{O}'\) là:

Xem lời giải » 2 năm trước 38
Câu 10: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{x-2}{1}=\frac{y+3}{2}=\frac{z-1}{3}\). Viết phương trình đường thẳng \({d}'\) là hình chiếu vuông góc của d lên mặt phẳng \(\left( Oyz \right)\).

Xem lời giải » 2 năm trước 37
Câu 11: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên dưới đây.

Khẳng định nào sau đây là khẳng định đúng?

Xem lời giải » 2 năm trước 37
Câu 12: Trắc nghiệm

Cho hàm số f liên tục trên \(\mathbb{R}\) thỏa \(f(x)+f(-x)=\sqrt{2+2\cos 2x}\), với mọi \(x\in \mathbb{R}\). Giá trị của tích phân \(I=\int\limits_{\frac{-\pi }{2}}^{\frac{\pi }{2}}{f(x)dx}\) là

Xem lời giải » 2 năm trước 35
Câu 13: Trắc nghiệm

Tìm tập xác định D của hàm số \(y={{\left( 2x-1 \right)}^{-2}}\)

Xem lời giải » 2 năm trước 35
Câu 14: Trắc nghiệm

Gọi \({{x}_{1}},{{x}_{2}}\) là nghiệm của phương trình \({{\log }_{x}}2-{{\log }_{16}}x=0\). Khi đó tích \({{x}_{1}}.{{x}_{2}}\) bằng:

Xem lời giải » 2 năm trước 34
Câu 15: Trắc nghiệm

Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng 1, SA vuông góc với đáy, góc giữa mặt bên SBC và đáy bằng \(60{}^\circ \). Diện tích mặt cầu ngoại tiếp hình chóp S.ABC bằng bao nhiêu?

Xem lời giải » 2 năm trước 34

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »