Cho hình trụ có hai đường tròn đáy \(\left( O;R \right)\) và \(\left( {O}';R \right)\), chiều cao \(h=\sqrt{3}R\). Đoạn thẳng AB có hai đầu mút nằm trên hai đường tròn đáy hình trụ sao cho góc hợp bởi AB và trục của hình trụ là \(\alpha =30{}^\circ \). Thể tích tứ diện \(ABO{O}'\) là:
A. \(\frac{{{R^3}}}{4}\)
B. \(\frac{{{R^3}}}{2}\)
C. \(\frac{{3{R^3}}}{2}\)
D. \(\frac{{3{R^3}}}{4}\)
Lời giải của giáo viên
Ta có: \(OO'\parallel BB'\) nên \(\left( \widehat{AB,OO'} \right)=\left( \widehat{AB,BB'} \right)=\widehat{ABB'}=30{}^\circ \).
Đặt \(V={{V}_{OA'B.O'AB'}}\).
Ta có: \({{V}_{OA'B.O'AB'}}={{V}_{B.O'AB'}}+{{V}_{B.OA'AO}}=\frac{1}{3}V+{{V}_{B.OA'AO}}\Rightarrow {{V}_{B.OA'AO}}=\frac{2}{3}V\).
Mà \(\frac{d\left( A',\left( OBA \right) \right)}{d\left( O',\left( OBA \right) \right)}=\frac{IA'}{IO'}=1\) nên \({{V}_{A'.OAB}}={{V}_{O'OAB}}=\frac{1}{3}V\).
Ta có OB'=R, AB'=R nên tam giác O'AB' đều nên có diện tích bằng \(\frac{{{R}^{2}}\sqrt{3}}{4}\).
Vậy ta có \({V_{O'OAB}} = \frac{1}{3}V = \frac{{{R^3}}}{4}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho V là thể tích khối nón tròn xoay có bán kính đáy r và chiều cao h. V được cho bởi công thức nào sau đây:
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \(\left( \alpha \right):2x-3z+2=0\). Vectơ nào dưới đây là vectơ pháp tuyến của \(\left( \alpha \right)\)?
Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có \(AB=1,AC=2,A{A}'=3\) và \(\widehat{BAC}=120{}^\circ \). Gọi M, N lần lượt là các điểm trên cạnh \(B{B}', C{C}'\) sao cho \(BM=3{B}'M, CN=2{C}'N\). Tính khoảng cách từ điểm M đến mặt phẳng \(\left( A'BN \right)\).
Có tất cả bao nhiêu số dương a thỏa mãn đẳng thức \({{\log }_{2}}a+{{\log }_{3}}a+{{\log }_{5}}a={{\log }_{2}}a.{{\log }_{3}}a.{{\log }_{5}}a\)
Diện tích hình phẳng được giới hạn bởi đồ thị của hàm số y=f(x) liên tục trên đoạn \(\text{ }\!\![\!\!\text{ }a;b\text{ }\!\!]\!\!\text{ }\), trục hoành và hai đường thẳng x=a, x=b được tính theo công thức
Gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm của phương trình \({{z}^{2}}-2z+6=0\). Trong đó \({{z}_{1}}\) có phần ảo âm. Giá trị biểu thức \(M=|{{z}_{1}}|+|3{{z}_{1}}-{{z}_{2}}|\) là:
Xét các số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1, 3, 5, 7, 9. Tính xác suất để tìm được một số không bắt đầu bởi 135.
Khối chóp S.ABCD có đáy ABCD là hình thoi cạnh a. SA=SB=SC=a, Cạnh SD thay đổi. Thể tích lớn nhất của khối chóp S.ABCD là:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{x-2}{1}=\frac{y+3}{2}=\frac{z-1}{3}\). Viết phương trình đường thẳng \({d}'\) là hình chiếu vuông góc của d lên mặt phẳng \(\left( Oyz \right)\).
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên dưới đây.
Khẳng định nào sau đây là khẳng định đúng?
Cho hình lăng trụ tứ giác đều \(ABCD.{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\) cạnh đáy bằng 1 và chiều cao bằng x. Tìm x để góc tạo bởi đường thẳng \({{B}_{1}}D\) và \(\left( {{B}_{1}}{{D}_{1}}C \right)\) đạt giá trị lớn nhất.
Cho hàm số f liên tục trên \(\mathbb{R}\) thỏa \(f(x)+f(-x)=\sqrt{2+2\cos 2x}\), với mọi \(x\in \mathbb{R}\). Giá trị của tích phân \(I=\int\limits_{\frac{-\pi }{2}}^{\frac{\pi }{2}}{f(x)dx}\) là
Tìm tập xác định D của hàm số \(y={{\left( 2x-1 \right)}^{-2}}\)
Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\frac{1}{\sqrt{2m+1-x}}+{{\log }_{3}}\sqrt{x-m}\) xác định trên \(\left( 2;3 \right)\).
Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng 1, SA vuông góc với đáy, góc giữa mặt bên SBC và đáy bằng \(60{}^\circ \). Diện tích mặt cầu ngoại tiếp hình chóp S.ABC bằng bao nhiêu?