Cho hình lập phương có cạnh bằng a và một hình trụ có hai đáy là hai hình tròn nội tiếp hai mặt đối diện của hình lập phương. gọi S1là diện tích 6 mặt của hình lập phương, S2 là diện tích xung quanh của hình trụ. Hãy tính tỷ số \(\dfrac{{{S_1}}}{{{S_2}}}\) và chọn đáp án đúng:
A. \(\dfrac{{{S_1}}}{{{S_2}}} = \dfrac{1}{2}\)
B. \(\dfrac{{{S_1}}}{{{S_2}}} = \dfrac{\pi }{6}\)
C. \(\dfrac{{{S_1}}}{{{S_2}}} = \pi \)
D. \(\dfrac{{{S_1}}}{{{S_2}}} = \dfrac{\pi }{2}\)
Lời giải của giáo viên
Hình trụ có bán kính đáy \(\dfrac{a}{2}\) , chiều cao h = a
Suy ra: \({S_1} = 6{a^2};{S_2} = \pi {a^2}\)
Vậy \(\dfrac{{{S_2}}}{{{S_1}}} = \dfrac{\pi }{6}.\)
Chọn B
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a,\(\widehat {BCD} = {120^0}\) và \(AA' = \dfrac{{7a}}{2}\). Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.
Cho hai số thực a và b, với 0 < a< b < 1. Khẳng định nào sau đây đúng ?
Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\)trên \((0; + \infty )\).
Mô đun của số phức z thỏa mãn \(\dfrac{{2 + i}}{{1 - i}}z = \dfrac{{ - 1 + 3i}}{{2 + i}}\) là:
Trong không gian \(BD\), cho mặt cầu \(\overrightarrow {A'X} = \left( {\dfrac{a}{2};\dfrac{a}{2}; - b} \right)\); và mặt phẳng \(\overrightarrow {MX} = \left( { - \dfrac{a}{2}; - \dfrac{a}{2}; - \dfrac{b}{2}} \right)\).
Trong các mệnh đề sau, mệnh đề nào đúng?
Gọi \(\varphi \) là góc giữa hai vectơ \(\overrightarrow a = \left( {1;2;0} \right)\) và \(\overrightarrow b = \left( {2;0; - 1} \right)\), khi đó \(\cos \varphi \) bằng
Cho A và B là các điểm biểu diễn các số phức \({z_1} = 1 + 2i\,,\,\,{z_2} = 1 - 2i\). Diện tích của tam giác OAB bằng:
Cho hình nón có tỉ lệ giữa bán kính đáy và đường sinh bằng \(\dfrac{1}{3}\). Hình cầu nội tiếp hình nón này có thể tích bằng V. Thể tích hình nón bằng.
Cho khối chóp S.ABC. Lấy A', B' lần lượt thuộc SA, SB sao cho 2SA' = 3A'A; 3SB' = B'B. Tỉ số thể tích giữa hai khối chóp S.A'B'C và S.ABC là:
Tích vô hướng của hai vectơ \(\overrightarrow a = \left( { - 2;2;5} \right),\,\overrightarrow b = \left( {0;1;2} \right)\) trong không gian bằng
Biết F(x) là nguyên hàm của \(f(x) = \dfrac{1}{{x - 1}}\,,\,\,F(2) = 1\). Khi đó F(3) bằng :
Tâm đối xứng I của đồ thị hàm số \(y = - {{2x - 1} \over {x + 1}}\) là:
Tìm tập nghiệm của bất phương trình \({7^x} \ge 10 - 3x\).
Tìm họ các nguyên hàm của hàm số \(f(x) = \dfrac{1}{{6x - 2}}\).