Cho khối chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = a, \(\widehat{SBA}=\widehat{SCA}={{90}^{0}}\) , góc giữa hai mặt phẳng (SAB) và (SAC) bằng 600. Thể tích của khối chóp đã cho bằng
A. \({{a}^{3}}\)
B. \(\frac{{{a}^{3}}}{3}\)
C. \(\frac{{{a}^{3}}}{2}\)
D. \(\frac{{{a}^{3}}}{6}\)
Lời giải của giáo viên
Gọi H là hình chiếu của S lên\(\left( ABC \right)\)
Theo bài ra, ta có \(HC\bot CA,\,\,HB\bot BA\Rightarrow ABHC\) là hình vuông cạnh a.
Gọi \(O=HA\cap BC\) , E là hình chiếu của O lên SA.
Ta dễ dàng chứng minh được \(EC\bot SA,\,\,EB\bot SA\)
Từ đó, ta được: góc giữa \(\left( SAC \right)\) và \(\left( SAB \right)\) là góc giữa EB và EC.
Vì \(\widehat{CAB}={{90}^{0}}\) nên \(\widehat{BEC}>{{90}^{0}}\Rightarrow \widehat{BEC}={{120}^{0}}.\)
Ta dễ dàng chỉ ra được \(\widehat{OEB}=\widehat{OEC}={{60}^{0}}\)
Đặt \(SH=x\Rightarrow SA=\sqrt{{{x}^{2}}+2{{a}^{2}}}\Rightarrow OE=\frac{AO.SH}{SA}=\frac{xa\sqrt{2}}{2\sqrt{{{x}^{2}}+2{{a}^{2}}}}\)
\(\tan {{60}^{0}}=\frac{OC}{OE}\Rightarrow \frac{a\sqrt{2}}{2}:\frac{xa\sqrt{2}}{2\sqrt{{{x}^{2}}+2{{a}^{2}}}}=\sqrt{3}\Leftrightarrow x=a\)
Vậy \({{V}_{S.ABC}}=\frac{1}{2}{{V}_{S.HBAC}}=\frac{1}{2}.\frac{1}{3}.a.{{a}^{2}}=\frac{{{a}^{3}}}{6}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) liên tục trên R và thỏa mãn \(xf({{x}^{3}})+f(1-{{x}^{2}})=-{{x}^{10}}+{{x}^{6}}-2x,\forall x\in \mathbb{R}\). Khi đó \(\int\limits_{-1}^{0}{f(x)dx}\) bằng
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2; -2; 1) trên mặt phẳng (Oxy) có tọa độ là
Trong không gian Oxyz , vecto nào dưới đây là một vecto chỉ phương của đường thẳng đi qua hai điểm M(2; 3; -1) và N(4; 5; 3)?
Tập nghiệm của bất phương trình \({{5}^{x-1}}\ge {{5}^{{{x}^{2}}-x-9}}\) là?
Nghiệm của phương trình \({{\log }_{3}}(2x-1)=2\) là
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{5{{x}^{2}}-4x-1}{{{x}^{2}}-1}\) là
Với a là số thực dương tùy ý, \({{\log }_{2}}({{a}^{2}})\) bằng
Từ một nhóm học sinh gồm 6 nam và 8 nữ, có bao nhiêu cách chọn ra một học sinh?
Cho khối lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi cạnh a, \(BD=\sqrt{3}a\) và AA’ = 4a (minh họa như hình bên). Thể tích của khối lăng trụ đã cho bằng
Trên mặt phẳng tọa độ, điểm biểu diễn số phức \(z={{(1+2i)}^{2}}\) là điểm nào dưới đây?
Cho khối lập phương có cạnh bằng 6. Thể tích của khối lập phương đã cho bằng
Trong không gian Oxyz, cho các vecto \(\overrightarrow{a}=(1;0;3)\) và \(\overrightarrow{b}=(-2;2;5)\). Tích vô hướng \(\overrightarrow{a}.(\overrightarrow{a}+\overrightarrow{b})\) bằng
Cho cấp số nhân \(({{u}_{n}})\) với \({{u}_{1}}=2\) và \({{u}_{2}}=6\). Công bội của cấp số nhân đã cho bằng
Cho hàm số f(x) có f(3) = 3 và \(f'(x)=\frac{x}{x+1-\sqrt{x+1}},\forall x>0\). Khi đó \(\int\limits_{3}^{8}{f(x)dx}\) bằng