Câu hỏi Đáp án 2 năm trước 47

Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy, SA=2a. Tính theo a thể tích khối chóp S.ABCD.

A. \(V = \frac{{{a^3}\sqrt {15} }}{{12}}\)

B. \(V = \frac{{{a^3}\sqrt {15} }}{6}\)

Đáp án chính xác ✅

C. \(V = \frac{{2{a^3}}}{3}\)

D. \(V = 2{a^3}\)

Lời giải của giáo viên

verified HocOn247.com

Gọi H là trung điểm AB.

Theo đề, tam giác SAB cân tại S nên suy ra \(SH\bot AB\).

Mặt khác, tam giác SAB nằm trong mặt phẳng vuông góc với đáy nên suy ra \(SH\bot \left( ABCD \right)\).

Xét tam giác SHA vuông tại H.

\(SH=\sqrt{S{{A}^{2}}-A{{H}^{2}}}=\sqrt{{{\left( 2a \right)}^{2}}-{{\left( \frac{a}{2} \right)}^{2}}}=\frac{a\sqrt{15}}{2}\)

Diện tích hình vuông là \({{S}_{ABCD}}={{a}^{2}}\)

Vậy thể tích khối chóp S.ABCD là \(V=\frac{1}{3}.SH.{{S}_{ABCD}}=\frac{{{a}^{3}}\sqrt{15}}{6}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( {{S}_{m}} \right):{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-m \right)}^{2}}=\frac{{{m}^{2}}}{4}\) và hai điểm \(A\left( 2;3;5 \right), B\left( 1;2;4 \right)\). Tìm giá trị nhỏ nhất của m để trên \(\left( {{S}_{m}} \right)\) tồn tại điểm M sao cho \(M{{A}^{2}}-M{{B}^{2}}=9\).

Xem lời giải » 2 năm trước 48
Câu 2: Trắc nghiệm

Trong không gian Oxyz, điểm \(M\left( 3;4;-2 \right)\) thuộc mặt phẳng nào trong các mặt phẳng sau?

Xem lời giải » 2 năm trước 48
Câu 3: Trắc nghiệm

Đạo hàm của hàm số \(f\left( x \right)={{6}^{1-3x}}\) là:

Xem lời giải » 2 năm trước 44
Câu 4: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau

Hỏi đồ thị hàm số \(g\left( x \right)=\left| f\left( x-2018 \right)+2019 \right|\) có bao nhiêu điểm cực trị?

Xem lời giải » 2 năm trước 43
Câu 5: Trắc nghiệm

Từ một hộp đựng 5 quả cầu màu đỏ, 8 quả cầu màu xanh và 7 quả cầu màu trắng, chọn ngẫu nhiên 4 quả cầu. Tính xác suất để 4 quả cầu được chọn có đúng 2 quả cầu màu đỏ.

Xem lời giải » 2 năm trước 43
Câu 6: Trắc nghiệm

Đường cong hình bên là đồ thị của hàm số nào trong bốn hàm số ở phương án A, B, C, D dưới đây?

Xem lời giải » 2 năm trước 41
Câu 7: Trắc nghiệm

Cho hàm số \(y=a{{x}^{3}}+b{{x}^{2}}+cx+d\,\left( a\,,\,b\,,\,c\,,\,d\in \mathbb{R} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là

Xem lời giải » 2 năm trước 41
Câu 8: Trắc nghiệm

Cho hình hộp \(ABCD.{A}'{B}'{C}'{D}'\) có đáy ABCD là hình chữ nhật với AB=a, \(AD=a\sqrt{3}\). Hình chiếu vuông góc của \({A}'\) lên \(\left( ABCD \right)\) trùng với giao điểm của AC và BD. Khoảng cách từ \({B}'\) đến mặt phẳng \(\left( {A}'BD \right)\) là

Xem lời giải » 2 năm trước 40
Câu 9: Trắc nghiệm

Tọa độ giao điểm của đồ thị hàm số \(y=\frac{2x-3}{1-x}\) với trục tung là

Xem lời giải » 2 năm trước 40
Câu 10: Trắc nghiệm

Cho \({{\log }_{5}}7=a\) và \({{\log }_{5}}4=b.\) Biểu diễn \({{\log }_{5}}560\) dưới dạng \({{\log }_{5}}560=m.a+n.b+p,\) với \(m,\,\,n,\,\,p\) là các số nguyên. Tính S=m+n.p.

Xem lời giải » 2 năm trước 40
Câu 11: Trắc nghiệm

Hàm số \(y=\frac{x+1}{x-1}\) nghịch biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Cho hàm số y=f(x) liên tục trên đoạn \(\left[ -2;6 \right]\), có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \(f\left( x \right)\) trên miền \(\left[ -2;6 \right]\). Tính giá trị của biểu thức T=2M+3m.

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Tìm nghiệm của phương trình \({{\log }_{3}}\left( x-9 \right)=3\).

Xem lời giải » 2 năm trước 38
Câu 14: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right)=\cos x\) là

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ bên dưới.

Hàm số \(y=f\left( x \right)\) đồng biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »