Đạo hàm của hàm số \(f\left( x \right)={{6}^{1-3x}}\) là:
A. \(f'\left( x \right) = - {3.6^{1 - 3x}}.\ln 6\)
B. \(f'\left( x \right) = - {6^{1 - 3x}}.\ln 6\)
C. \(f'\left( x \right) = - x{.6^{1 - 3x}}.\ln 6\)
D. \(f'\left( x \right) = \left( {1 - 3x} \right){.6^{ - 3x}}\)
Lời giải của giáo viên
\(f\left( x \right) = {6^{1 - 3x}} \Rightarrow f'\left( x \right) = {\left( {1 - 3x} \right)^\prime }{.6^{1 - 3x}}.\ln 6 = - {3.6^{1 - 3x}}.\ln 6\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( {{S}_{m}} \right):{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-m \right)}^{2}}=\frac{{{m}^{2}}}{4}\) và hai điểm \(A\left( 2;3;5 \right), B\left( 1;2;4 \right)\). Tìm giá trị nhỏ nhất của m để trên \(\left( {{S}_{m}} \right)\) tồn tại điểm M sao cho \(M{{A}^{2}}-M{{B}^{2}}=9\).
Trong không gian Oxyz, điểm \(M\left( 3;4;-2 \right)\) thuộc mặt phẳng nào trong các mặt phẳng sau?
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy, SA=2a. Tính theo a thể tích khối chóp S.ABCD.
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
Hỏi đồ thị hàm số \(g\left( x \right)=\left| f\left( x-2018 \right)+2019 \right|\) có bao nhiêu điểm cực trị?
Từ một hộp đựng 5 quả cầu màu đỏ, 8 quả cầu màu xanh và 7 quả cầu màu trắng, chọn ngẫu nhiên 4 quả cầu. Tính xác suất để 4 quả cầu được chọn có đúng 2 quả cầu màu đỏ.
Đường cong hình bên là đồ thị của hàm số nào trong bốn hàm số ở phương án A, B, C, D dưới đây?
Tọa độ giao điểm của đồ thị hàm số \(y=\frac{2x-3}{1-x}\) với trục tung là
Cho hàm số \(y=a{{x}^{3}}+b{{x}^{2}}+cx+d\,\left( a\,,\,b\,,\,c\,,\,d\in \mathbb{R} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là
Cho hình hộp \(ABCD.{A}'{B}'{C}'{D}'\) có đáy ABCD là hình chữ nhật với AB=a, \(AD=a\sqrt{3}\). Hình chiếu vuông góc của \({A}'\) lên \(\left( ABCD \right)\) trùng với giao điểm của AC và BD. Khoảng cách từ \({B}'\) đến mặt phẳng \(\left( {A}'BD \right)\) là
Cho \({{\log }_{5}}7=a\) và \({{\log }_{5}}4=b.\) Biểu diễn \({{\log }_{5}}560\) dưới dạng \({{\log }_{5}}560=m.a+n.b+p,\) với \(m,\,\,n,\,\,p\) là các số nguyên. Tính S=m+n.p.
Hàm số \(y=\frac{x+1}{x-1}\) nghịch biến trên khoảng nào dưới đây?
Cho hàm số y=f(x) liên tục trên đoạn \(\left[ -2;6 \right]\), có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \(f\left( x \right)\) trên miền \(\left[ -2;6 \right]\). Tính giá trị của biểu thức T=2M+3m.
Cho hàm số \(f\left( x \right)\). Biết \(f\left( 0 \right)=4\) và \({f}'\left( x \right)=2{{\sin }^{2}}x+1,\text{ }\forall x\in \mathbb{R}\), khi đó \(\int\limits_{0}^{\frac{\pi }{4}}{f\left( x \right)\text{d}x}\) bằng
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_{0}^{4}{f\left( x \right)d\text{x}}=10,\,\,\int\limits_{3}^{4}{f\left( x \right)d\text{x}}=4\). Tích phân \(\int\limits_{0}^{3}{f\left( x \right)d\text{x}}\) bằng
Trong không gian Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l} x = 1\\ y = 2 + 3t\\ z = 5 - t \end{array} \right.\) \(\left( t\in \mathbb{R} \right)\). Vectơ nào dưới đây là vectơ chỉ phương của d?