Cho khối chóp S.ABCD có đáy là hình bình hành, gọi B ' và D ' theo thứ tự là trung điểm các cạnh SB, SD. Mặt phẳng (AB’D’) cắt cạnh SC tại C’. Tính tỷ số thể tích của hai khối đa diện được chia ra bởi mặt phẳng (AB’D’)
A. \(\dfrac{1}{2}\)
B. \(\dfrac{1}{6}\)
C. \(\dfrac{1}{{12}}\)
D. \(\dfrac{1}{5}\)
Lời giải của giáo viên
Gọi O là tâm của hình bình hành ABCD. SO cắt B'D' tại I.
Nối AI cắt SC tại C' nên A, B', C', D' đồng phẳng
Đặt \({V_{S.ABC{\rm{D}}}} = V \Rightarrow {V_{S.AC{\rm{D}}}} = {V_{S.ABC}} = \dfrac{V}{2}\)
Ta có \(\dfrac{{{V_{S.AC'D'}}}}{{{V_{S.AC{\rm{D}}}}}} = \dfrac{{SC'}}{{SC}}.\dfrac{{S{\rm{D}}'}}{{S{\rm{D}}}}\) và \(\dfrac{{{V_{S.AC'B'}}}}{{{V_{S.ACB}}}} = \dfrac{{SC'}}{{SC}}.\dfrac{{SB'}}{{SB}}\)
Do đó \(\dfrac{{{V_{S.AC'B'}}}}{{{V_{S.ACB}}}} + \dfrac{{{V_{S.AC'D'}}}}{{{V_{S.ACD}}}} = \dfrac{{SC'}}{{SC}}\left( {\dfrac{{SB'}}{{SB}} + \dfrac{{SD'}}{{SD}}} \right) = \dfrac{{SC'}}{{SC}}\)
Hay \(\dfrac{{2{V_{S.AC'B'}}}}{V} + \dfrac{{2{V_{S.AC'D'}}}}{V} = \dfrac{{SC'}}{{SC}}\)
\( \Leftrightarrow \dfrac{{2\left( {{V_{S.AC'B'}} + {V_{S.AC'D'}}} \right)}}{V} = \dfrac{{SC'}}{{SC}} \Leftrightarrow \dfrac{{2{V_{S.AB'C'D'}}}}{V} = \dfrac{{SC'}}{{SC}}\)
Do \(B'D' = \dfrac{1}{2}BD \Rightarrow SI = \dfrac{1}{2}SO\).
Xét tam giác \(\Delta SCO\) có \(C',I,A\) thẳng hàng nên áp dụng định lý Me – ne – la – uýt ta có :
\(\dfrac{{C'S}}{{C'C}}.\dfrac{{AC}}{{AO}}.\dfrac{{IO}}{{IS}} = 1 \Leftrightarrow \dfrac{{C'S}}{{C'C}}.2.1 = 1 \Leftrightarrow \dfrac{{C'S}}{{C'C}} = \dfrac{1}{2}\) \( \Rightarrow \dfrac{{SC'}}{{SC}} = \dfrac{1}{3}\)
Vậy \(\dfrac{{2{V_{S.AB'C'D'}}}}{V} = \dfrac{1}{3} \Leftrightarrow {V_{S.AB'C'D'}} = \dfrac{V}{6} \Rightarrow {V_{AB'C'D'BC{\rm{D}}}} = V - \dfrac{V}{6} = \dfrac{{5V}}{6}\)
Hay tỷ số thể tích của hai khối đa diện được chia ra bởi (AB'D') là: \(\dfrac{{{V_{S.AB'C'D'}}}}{{{V_{AB'C'D'BC{\rm{D}}}}}} = \dfrac{V}{6}:\dfrac{{5V}}{6} = \dfrac{1}{5}\).
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), cạnh bằng \(4a\). Cạnh bên \(SA = 2a\). Hình chiếu vuông góc của đỉnh \(S\) trên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm của \(H\) của đoạn thẳng \(AO\). Tính khoảng cách \(d\) giữa các đường thẳng \(SD\) và \(AB\).
Cho hình bình hành \(ABCD\) tâm \(O.\) Đẳng thức nào sau đây sai?
Hệ số của \({x^7}\) trong khai triển của nhị thức Niu tơn \({\left( {3 - x} \right)^9}\) là
Đạo hàm của hàm số \(y = \sqrt {4{x^2} + 3x + 1} \) là hàm số nào sau đây ?
Cho hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\). Với giá trị nào của \(m\) để đường thẳng \(y = - x + m\) cắt đồ thị \(\left( C \right)\) tại hai điểm phân biệt?
Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng \(a.\) Tính cosin của góc giữa hai mặt bên không liền kề nhau.
Giá trị nhỏ nhất của hàm số \(y = 1 + x + \dfrac{4}{x}\) trên đoạn \(\left[ { - 3; - 1} \right]\) bằng
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(BC = a\), mặt phẳng \(\left( {A'BC} \right)\) tạo với đáy một góc \(30^\circ \) và tam giác \(A'BC\) có diện tích bằng \({a^2}\sqrt 3 \). Tính thể tích khối lăng trụ \(ABC.A'B'C'\).
Tập xác định của hàm số \(f\left( x \right) = \dfrac{{ - {x^2} + 2x}}{{{x^2} + 1}}\) là tập hợp nào sau đây?
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{2x - 1}}\) . Biết \(F\left( 1 \right) = 2\) . Giá trị của \(F\left( 2 \right)\) là
Cho hình chóp đều \(S.ABC\) có cạnh đáy bằng \(a,\) góc giữa mặt bên và đáy bằng \(60^\circ .\) Tính theo \(a\) thể tích khối chóp \(S.ABC.\)
Cho một tấm nhôm hình vuông cạnh \(6cm.\) Người ta muốn cắt một hình thang như hình vẽ. Trong đó \(AE = 2\left( {cm} \right),AH = x\left( {cm} \right),CF = 3\left( {cm} \right),CG = y\left( {cm} \right).\) Tìm tổng \(x + y\) để diện tích hình thang \(EFGH\) đạt giá trị nhỏ nhất.
Cho hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + \left( {4m - 3} \right)x + 2017\). Tìm giá trị lớn nhất của tham số thực \(m\) để hàm số đã cho đồng biến trên \(\mathbb{R}\).
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a và SA \( \bot \)(ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Tính \(\dfrac{{50V\sqrt 3 }}{{{a^3}}}\), với V là thể tích khối chóp A.BCNM