Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy, góc giữa \(\left( SCD \right)\) và mặt phẳng đáy bằng \(60{}^\circ \). Tính thể tích V của khối chóp S.ABCD.
A. \(V = \frac{{{a^3}\sqrt {15} }}{6}\)
B. \(V = \frac{{{a^3}\sqrt 3 }}{6}\)
C. \(V = \frac{{{a^3}\sqrt 3 }}{3}\)
D. \(V = \frac{{{a^3}\sqrt {15} }}{3}\)
Lời giải của giáo viên
Diện tích đáy là \({{S}_{ABCD}}=AB.AD={{a}^{2}}\).
Gọi H là trung điểm của AB. Khi đó, \(SH\bot AB\).
Kết hợp với \(\left( SAB \right)\bot \left( ABCD \right)\) và \(\left( SAB \right)\bigcap \left( ABCD \right)=AB\) thì \(SH\bot \left( ABCD \right)\).
Gọi M là trung điểm của CD, ta có \(HM\bot CD\).
Suy ra, góc giữa \(\left( SCD \right)\) và mặt phẳng đáy là \(\widehat{SMH}=60{}^\circ \).
Ta tính được HM=a và \(SH=HM\tan 60{}^\circ =a\sqrt{3}\).
Vậy thể tích khối chóp S.ABCD là \(V=\frac{1}{3}\times {{a}^{2}}\times a\sqrt{3}=\frac{{{a}^{3}}\sqrt{3}}{3}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm m để phương trình \({4^x} - 2\left( {m - 1} \right){.2^x} + 3m - 4 = 0\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) sao cho \({x_1} + {x_2} > 2\).
Trong không gianOxyz, tìm m để góc giữa hai véc-tơ \(\overrightarrow{u}=\left( 1;{{\log }_{3}}5;{{\log }_{m}}2 \right)\) và \(\overrightarrow{v}=\left( 3;{{\log }_{5}}3;4 \right)\) là góc nhọn.
Trong không gian Oxyz, cho 2 mặt phẳng \(\left( P \right):2x-y+z+2=0\) và \(\left( Q \right):x+y+2z-1=0\). Tính góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).
Trong không gian Oxyz, cho ba điểm \(A\left( 1;1;1 \right),B\left( -1;2;0 \right),C\left( 3;-1;2 \right)\). Điểm \(M\left( a;b;c \right)\) thuộc đường thẳng \(\Delta :\frac{x-1}{2}=\frac{y}{1}=\frac{z+1}{-1}\) sao cho biểu thức \(P=2M{{A}^{2}}+3M{{B}^{2}}-4M{{C}^{2}}\) đạt giá trị nhỏ nhất. Tính a+b+c.
Trong không gian Oxyz, cho tứ diện ABCD với \(A\left( {1;6;2} \right),B\left( {5;1;3} \right),C\left( {4;0;6} \right),D\left( {5;0;4} \right)\). Viết phương trình mặt cầu (S) có tâm D và tiếp xúc với mặt phẳng (ABC).
Tìm giá trị lớn nhất của hàm số \(y = \sqrt {5 - 4\sin x} \).
Cho \(A=\int\limits_{1}^{2}{\left[ 3f\left( x \right)+2g\left( x \right) \right]}\,dx=1\) và \(B=\int\limits_{1}^{2}{\left[ 2f\left( x \right)-g\left( x \right) \right]}\,dx=3\). Khi đó \(\int\limits_{1}^{2}{f\left( x \right)}\,dx\) có giá trị là
Trong không gian Oxyz, cho 2 mặt phẳng \(\left( P \right):nx+7y-6z+4=0\) và \(\left( Q \right):3x-my-2z-7=0\) song song với nhau. Tính giá trị của \(m,\,n\).
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:x-2y+3=0. Viết phương trình d' là ảnh của đường thẳng d qua phép tịnh tiến theo véc-tơ \(\overrightarrow{v}=(3\,;1)\).
Tìm giá trị lớn nhất của tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {4m - 3} \right)x + 2018\) đồng biến trên R.
Cho tứ diện ABCD, gọi \(M,\,\,N\) lần lượt là trung điểm của AD và BC. Khi đó, giao tuyến của mặt phẳng \(\left( MBC \right)\) và \(\left( NDA \right)\) là
Tính \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 1}}{{x - 1}}\)
Một hình nón \(\left( N \right)\) có thiết diện qua trục là tam giác đều có cạnh bằng 2. Thể tích V của khối nón giới hạn bởi \(\left( N \right)\) bằng
Cho khối chóp S.ABCD có đáy là hình chữ nhật, AB=a, \(AD=a\sqrt{3}\), cạnh bên SA vuông góc với đáy, góc giữa SB và mặt phẳng đáy bằng \(60{}^\circ \). Tính thể tích V của khối chóp S.ABCD.
Cho số phức \(z = \frac{{1 + i}}{{1 - i}}\) thì z2019 có giá trị là