Cho khối nón có độ lớn góc ở đỉnh là \(\frac{\pi }{3}\). Một khối cầu (S1) nội tiếp trong khối nón. Gọi (S2) là khối cầu tiếp xúc với tất cả các đường sinh của nón và với (S1, S3) là khối tiếp xúc với tất cả các đường sinh của nón với (S2,...,Sn) là khối cầu tiếp xúc với tất cả các đường sinh của nón và với (Sn-1). Gọi \(V_1, V_2,...,V_{n-1},V_n\) lần lượt là thể tích của khối cầu \({S_1},{S_2},{S_3},...,{S_{n - 1}},{S_n}\) và V là thể tích của khối nón. Tính giá trị của biểu thức \(T = \mathop {\lim }\limits_{n \to + \infty } \frac{{{V_1} + {V_2} + ... + {V_n}}}{V}\)
A. \(\frac{3}{5}\)
B. \(\frac{6}{{13}}\)
C. \(\frac{7}{9}\)
D. \(\frac{1}{2}\)
Lời giải của giáo viên
Thiết diện qua trục của hình nón là một tam giác đều cạnh l.
Do đó bán kính đường tròn nội tiếp tam giác cũng chính là bán kính mặt cầu nội tiếp chóp là \({r_1} = \frac{1}{3}\frac{{l\sqrt 3 }}{2} = \frac{{l\sqrt 3 }}{6}\).
Áp dụng định lí Ta-lét ta có:
\(\frac{{AA'}}{{AB}} = \frac{{AH'}}{{AH}} = \frac{{AH - HH'}}{{AH}} = \frac{{\frac{{l\sqrt 3 }}{2} - \frac{{l\sqrt 3 }}{3}}}{{\frac{{l\sqrt 3 }}{2}}} = \frac{1}{3} \Rightarrow AA' = \frac{l}{3}\)
Tương tự ta tìm được \({r_2} = \frac{l}{3}.\frac{{\sqrt 3 }}{6} = \frac{{l\sqrt 3 }}{{18}} = \frac{{{r_1}}}{3}\). Tiếp tục như vậy ta có \({r_3} = \frac{{{r_1}}}{{{3^2}}},{r_4} = \frac{{{r_1}}}{{{3^3}}},...{r_n} = \frac{{{r_1}}}{{{3^{n - 1}}}}\).
Ta có: \({V_1} = \frac{4}{3}\pi r_1^3,{V_2} = \frac{4}{3}\pi r_2^3 = \frac{4}{3}\pi r_2^3 = \frac{4}{3}\pi {\left( {\frac{{{r_1}}}{3}} \right)^3} = \frac{1}{{{3^3}}}{V_1},{V_3} = \frac{1}{{{{\left( {{3^3}} \right)}^2}}}{V_1},...;{V_n} = \frac{1}{{{{\left( {{3^3}} \right)}^{n - 1}}}}{V_1}\)
\( \Rightarrow \mathop {\lim }\limits_{n \to + \infty } \frac{{{V_1} + {V_2} + ... + {V_n}}}{V} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{V_1}\left( {1 + \frac{1}{{{3^3}}} + \frac{1}{{{{\left( {{3^3}} \right)}^2}}} + ... + \frac{1}{{{{\left( {{3^3}} \right)}^{n - 1}}}}} \right)}}{V} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{V_1}.S}}{V}\)
Đặt \(S = 1 + \frac{1}{{{3^3}}} + \frac{1}{{{{\left( {{3^3}} \right)}^2}}} + ... + \frac{1}{{{{\left( {{3^3}} \right)}^{n - 1}}}}\).
Đây là tổng của CSN lùi vô hạn với công bội \(q = \frac{1}{{{3^3}}} < 1 \Rightarrow \mathop {\lim }\limits_{n \to + \infty } S = \frac{1}{{1 - \frac{1}{{{3^3}}}}} = \frac{{27}}{{26}}\)
\(\begin{array}{l}
\Rightarrow {V_1} + {V_2} + ... + {V_n} = \frac{{27}}{{26}}{V_1} = \frac{{27}}{{26}}.\frac{4}{3}\pi {\left( {\frac{{l\sqrt 3 }}{6}} \right)^3} = \frac{{\sqrt 3 }}{{52}}\pi {l^3}\\
V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {\left( {\frac{l}{2}} \right)^2}.\frac{{l\sqrt 3 }}{2} = \frac{{\sqrt 3 \pi {l^3}}}{{24}}\\
\Rightarrow T = \frac{{\frac{{\sqrt 3 }}{{52}}\pi {l^3}}}{{\frac{{\sqrt 3 \pi {l^3}}}{{24}}}} = \frac{6}{{13}}
\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right) = {x^2} - \left( {2m - 1} \right){x^2} + \left( {2 - m} \right)x + 2\). Tìm tất cả các giá trị thực của tham số m để hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 cực trị.
Đồ thị sau là đồ thị của hàm số nào trong bốn hàm số cho dưới đây
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, \(\angle BSA = 60^\circ \). Tính thể tích V của khối chóp S.ABCD?
Hàm số \(f\left( x \right) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + ... + C_{2019}^{2019}{x^{2019}}\) có bao nhiêu điểm cực trị?
Hàm số \(y = - {x^4} - {x^2} + 1\) có mấy điểm cực trị?
Số giá trị nguyên của tham số \(m \in \left[ { - 10;10} \right]\) để bất phương trình \(\sqrt {3 + x} + \sqrt {6 - x} - \sqrt {18 + 3x - {x^2}} \le {m^2} - m + 1\) nghiệm đúng \(\forall x \in \left[ { - 3;6} \right]\) là
Gọi S là tập hợp các giá trị thực của tham số m để phương trình \({4^x} - m{.2^x} + 2m + 1 = 0\) có nghiệm. Tập R\S có bao nhiêu giá trị nguyên?
Tìm các giá trị thực của tham số m để hàm số \(f\left( x \right) = {x^3} + 3{x^2} - \left( {{m^2} - 3m + 2} \right)x + 5\) đồng biến trên khoảng (0;2)
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:
Đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?
Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi M, N lần lượt là trung điểm của SB, SC. Biết \(\left( {AMN} \right) \bot \left( {SBC} \right)\). Thể tích của khối chóp S.ABC bằng
Cho hàm số \(y = \frac{{1 - x}}{{{x^2} - 2mx + 4}}\). Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có ba đường tiệm cận?
Trong không gian, cho hình chóp S.ABC có SA, AB, BC đôi một vuông góc với nhau và SA = a, SB = b, SC = c. Mặt cầu đi qua S, A, B, C có bán kính bằng
Cho hàm số \(y=f(x)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}\left( {x - 2} \right)\). Tìm khoảng nghịch biến của đồ thị hàm số \(y=f(x)\).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB cân tại S có SA = SB = 2a nằm trong mặt phẳng vuông góc với đáy ABCD. Gọi \(\alpha \) là góc giữa SD và mặt phẳng đáy (ABCD). Mệnh đề nào sau đây đúng?
Cho hàm số \(y=f(x)\) có bảng biến thiên sau:
Hàm số \(y = \left| {f\left( x \right)} \right|\) có bao nhiêu điểm cực trị?