Cho khối tứ diện đều ABCD có thể tích bằng \(\frac{2\sqrt{2}}{3}\). Gọi M, N, P, Q lần lượt là trung điểm của AC, AD, BD, BC. Thể tích khối chóp BMNPQ là
A. \(\frac{{\sqrt 2 }}{9}\)
B. \(\frac{{2\sqrt 2 }}{9}\)
C. \(\frac{{\sqrt 2 }}{6}\)
D. \(\frac{4}{9}\)
Lời giải của giáo viên
Gọi V là thể tích của khối tứ diện đều ABCD.
Ta có \({{V}_{BMNPQ}}=2{{V}_{BPMQ}}\)(do MNPQ là hình thoi).
Mặt khác do P là trung điểm của BD nên \(d\left( P,\left( ABC \right) \right)=\frac{1}{2}d\left( D,\left( ABC \right) \right)\), đồng thời \({{S}_{BQM}}=\frac{1}{4}{{S}_{ABC}} \Rightarrow {{V}_{BPMQ}}=\frac{1}{3}d\left( P,\left( ABC \right) \right).{{S}_{BQM}} =\frac{1}{6}d\left( D,\left( ABC \right) \right).\frac{1}{4}{{S}_{ABC}}\)
\(=\frac{1}{8}.\frac{1}{3}d\left( D,\left( ABC \right) \right).{{S}_{ABC}}=\frac{V}{8} \Rightarrow {{V}_{BMNPQ}}=\frac{V}{4}=\frac{\sqrt{2}}{6}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho (P): 2x - 4z - 7 = 0. Véctơ nào dưới đây là một véctơ pháp tuyến của (P)?
Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ
Số nghiệm của phương trình \(2f\left( x \right) - 3 = 0\) là
Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{{ - 3x - 1}}{{x + 1}}\) trên đoạn [1;3] bằng
Gọi S là tập tất cả các giá trị của tham số m sao cho số phức \(z = \frac{{{m^2} + i}}{{2 + 3i}}\) có phần thực bằng 1. Tích tất cả các phần tử của S bằng
Cho hàm số f(x) có đạo hàm và liên tục trên \(\left[ {0\,;\frac{\pi }{2}} \right]\), thoả mãn \(\int\limits_0^{\frac{\pi }{2}} {f'{\rm{(}}x){\rm{si}}{{\rm{n}}^2}{\rm{xd}}x} = 8\) và \(f\left( {\frac{\pi }{2}} \right) = 3\). Tích phân \(I = \int\limits_0^{\frac{\pi }{2}} {f{\rm{(}}x){\rm{sin2}}x{\rm{d}}x} \) bằng
Số giao điểm của đồ thị hàm số \(y = {x^3} - 3{x^2} + 3x - 1\) và parabol \(y = {x^2} - x - 1\) là
Tiệm cận ngang của đồ thị hàm số \(y = \frac{{2 - 2x}}{{x + 1}}\)
Cho hai số phức \({{z}_{1}}=2+5i\) và \({{z}_{2}}=1+3i\). Phần thực của số phức \({{z}_{1}}.{{z}_{2}}\) bằng
Cho hàm số y = f(x) có bảng biến thiên sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho hàm số y = f(x) có bảng biến thiên như sau
Đồ thị hàm số y = f(x) có điểm cực tiểu là.
Trong không gian Oxyz, cho điểm \(M\left( 1;1;2 \right)\) và hai mặt phẳng \(\left( P \right):x+y+2z-1=0\), \(\left( Q \right):\,\,2x-y+3=0\). Viết phương trình tham số của đường thẳng d đi qua điểm M đồng thời song song với cả hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\)
Trong không gian Oxyz cho đường thẳng \(d:\,\frac{{x - 3}}{2} = \frac{{2y}}{3} = \frac{{1 - z}}{1}\). Véctơ nào dưới đây là một véc tơ chỉ phương của d?
Nếu \(\int\limits_{1}^{5}{f\left( x \right)dx}=6\) và \(\int\limits_{3}^{5}{f\left( x \right)}\,dx=-4\) thì \(\int\limits_{1}^{3}{f\left( x \right)\,dx}\) bằng