Câu hỏi Đáp án 2 năm trước 25

Cho không gian Oxyz, cho điểm A(0;1;2) và hai đường thẳng \({d_1}:\left\{ \begin{array}{l} x = 1 + t\\ y = - 1 - 2t\\ z = 2 + t \end{array} \right.\), \({d_2}:\frac{x}{2} = \frac{{y - 1}}{1} = \frac{{z + 1}}{{ - 1}}\). Viết phương trình mặt phẳng \(\left( \alpha  \right)\) đi qua A và song song với hai đường thẳng \({d_1},{d_2}\).

A. \(\left( \alpha  \right):x + 3y + 5z - 13 = 0\)

Đáp án chính xác ✅

B. \(\left( \alpha  \right):x + 2y + z - 13 = 0\)

C. \(\left( \alpha  \right):3x + y + z + 13 = 0\)

D. \(\left( \alpha  \right):x + 3y - 5z - 13 = 0\)

Lời giải của giáo viên

verified HocOn247.com

Ta có: Vectơ chỉ phương của hai đường thẳng d1, d2 lần lượt là \(\overrightarrow {{a_1}}  = \left( {1; - 2;1} \right);\,\,\,\overrightarrow {{a_2}}  = \left( {2;1; - 1} \right)\).

Vì mặt phẳng \(\left( \alpha  \right)\) song song với hai đường thẳng d1, d2 nên:

\(\overrightarrow {{n_\alpha }}  = \left[ {\overrightarrow {{a_1}} ;\overrightarrow {{a_2}} } \right] = \left( {1;3;5} \right)\).

Vậy phương trình mặt phẳng \(\left( \alpha  \right)\) cần tìm là:

\(\begin{array}{l} 1\left( {x - 0} \right) + 3\left( {y - 1} \right) + 5\left( {z - 2} \right) = 0.\\ \Leftrightarrow x + 3y + 5{\rm{z}} - 13 = 0. \end{array}\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho a, b, x là các số thực dương thỏa mãn \({\log _5}x = 2{\log _{\sqrt 5 }}a + 3{\log _{\frac{1}{5}}}b\). Mệnh đề nào là đúng?

Xem lời giải » 2 năm trước 38
Câu 2: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 2y + 2z - 1 = 0\). Khoảng cách từ điểm \(A\left( {1; - 2;1} \right)\) đến mặt phẳng (P) bằng

Xem lời giải » 2 năm trước 38
Câu 3: Trắc nghiệm

Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của d là

Xem lời giải » 2 năm trước 37
Câu 4: Trắc nghiệm

Nghiệm của phương trình 2x-3 = \(\frac12\) là

Xem lời giải » 2 năm trước 37
Câu 5: Trắc nghiệm

Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^2} + x\) và \(F\left( 1 \right) = 1\). Giá trị của \(F\left( { - 1} \right)\) bằng

Xem lời giải » 2 năm trước 35
Câu 6: Trắc nghiệm

Nguyên hàm của hàm số \(y = \frac{1}{{1 - x}}\) là:

Xem lời giải » 2 năm trước 34
Câu 7: Trắc nghiệm

Cho hai hàm số f(x) và g(x) có đạo hàm trên đoạn [1;4] và thỏa mãn hệ thức \(\left\{ \begin{array}{l} f\left( 1 \right) + g\left( 1 \right) = 4\\ g\left( x \right) = - x.f'\left( x \right);\,\,\,\,\,f\left( x \right) = - x.g'\left( x \right) \end{array} \right.\). Tính \(I = \int\limits_1^4 {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x} \).

Xem lời giải » 2 năm trước 34
Câu 8: Trắc nghiệm

Cho các số thực a, b, c thỏa mãn \({a^2} + {b^2} + {c^2} - 2a - 4b = 4\). Tính P = a + 2b + 3c khi biểu thức \(\left| {2a + b - 2c + 7} \right|\) đạt giá trị lớn nhất.

Xem lời giải » 2 năm trước 34
Câu 9: Trắc nghiệm

Tìm số giá trị nguyên thuộc đoạn \(\left[ { - 2021\,;2021} \right]\) của tham số m để đồ thị hàm số \(y = \frac{{\sqrt {x - 3} }}{{{x^2} + x - m}}\) có đúng hai đường tiệm cận.

Xem lời giải » 2 năm trước 34
Câu 10: Trắc nghiệm

Cho hai số thực x,y thay đổi thỏa mãn \(x+y+1=2\left( \sqrt{x-2}+\sqrt{y+3} \right)\).Giá trị lớn nhất của biểu thức \(S={{3}^{x+y-4}}+\left( x+y+1 \right){{2}^{7-x-y}}-3\left( {{x}^{2}}+{{y}^{2}} \right)\) là \(\frac{a}{b}\) với a,b là các số nguyên dương và \(\frac{a}{b}\) tối giản. Tính a+b.

Xem lời giải » 2 năm trước 33
Câu 11: Trắc nghiệm

Cho hàm số bậc bốn y = f(x) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right) + 1 = 0\) là

Xem lời giải » 2 năm trước 33
Câu 12: Trắc nghiệm

Tìm các giá trị của tham số m để hàm số \(y = \frac{1}{2}\ln \left( {{x^2} + 4} \right) - mx + 3\) nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).

Xem lời giải » 2 năm trước 33
Câu 13: Trắc nghiệm

Trong không gian Oxyz, cho hai điểm \(A\left( {3;5; - 1} \right)\) và \(B\left( {1;1;3} \right)\). Tọa độ điểm M  thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) nhỏ nhất là

Xem lời giải » 2 năm trước 32
Câu 14: Trắc nghiệm

Tiệm cận đứng của đồ thị hàm số \(y = \frac{{x - 1}}{{x + 1}}\) là

Xem lời giải » 2 năm trước 32
Câu 15: Trắc nghiệm

Họ nguyên hàm của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 3{\rm{x}} + 2}}\) là:

Xem lời giải » 2 năm trước 31

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »