Lời giải của giáo viên
Xét hàm số \(y=\frac{\sqrt{x-3}}{{{x}^{2}}+x-m}.\)
+) TXĐ: \(D=\left[ 3\,;+\infty \right)\)
+) \(\underset{x\to +\infty }{\mathop{\lim }}\,y=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\sqrt{x-3}}{{{x}^{2}}+x-m}=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\sqrt{\frac{1}{{{x}^{3}}}-\frac{3}{{{x}^{4}}}}}{1+\frac{1}{x}-\frac{m}{{{x}^{2}}}}=0.\) Do đó ĐTHS có 1 tiệm cận ngang y=0.
+) Để ĐTHS có 2 đường tiệm cận thì phải có thêm 1 tiệm cận đứng. Vậy yêu cầu bài toán trở thành: Tìm điều kiện để phương trình \({{x}^{2}}+x-m=0\) phải có 1 nghiệm lớn hơn hoặc bằng 3.
Trường hợp 1: Phương trình \({{x}^{2}}+x-m=0\) phải có 2 nghiệm \({{x}_{1}},{{x}_{2}}\) thỏa mãn \({{x}_{1}}<3<{{x}_{2}}.\)
\(\Leftrightarrow a.f(3)<0\Leftrightarrow 12-m<0\Leftrightarrow m>12.\)
Trường hợp 2: Phương trình \({{x}^{2}}+x-m=0\) có nghiệm x=3 thì m=12.
Với m=12 phương trình trở thành: \({{x}^{2}}+x-12=0\Leftrightarrow \left[ \begin{align} & x=3 \\ & x=-4 \\ \end{align} \right.\) ( tmđk)
Trường hợp 3: Phương trình \({{x}^{2}}+x-m=0\) có nghiệm kép x>3.
Khi \(m=\frac{-1}{4}\) thì phương trình có nghiệm \(x=\frac{-1}{2}.\) (không thỏa mãn)
Theo đề bài \(m\in \left[ -2021;2021 \right]\), m nguyên do đó \(m\in \left[ 12\,;2021 \right].\)
Vậy có (2021-12)+1=2010 giá trị của m.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho a, b, x là các số thực dương thỏa mãn \({\log _5}x = 2{\log _{\sqrt 5 }}a + 3{\log _{\frac{1}{5}}}b\). Mệnh đề nào là đúng?
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 2y + 2z - 1 = 0\). Khoảng cách từ điểm \(A\left( {1; - 2;1} \right)\) đến mặt phẳng (P) bằng
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của d là
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^2} + x\) và \(F\left( 1 \right) = 1\). Giá trị của \(F\left( { - 1} \right)\) bằng
Nguyên hàm của hàm số \(y = \frac{1}{{1 - x}}\) là:
Cho hai hàm số f(x) và g(x) có đạo hàm trên đoạn [1;4] và thỏa mãn hệ thức \(\left\{ \begin{array}{l} f\left( 1 \right) + g\left( 1 \right) = 4\\ g\left( x \right) = - x.f'\left( x \right);\,\,\,\,\,f\left( x \right) = - x.g'\left( x \right) \end{array} \right.\). Tính \(I = \int\limits_1^4 {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x} \).
Cho các số thực a, b, c thỏa mãn \({a^2} + {b^2} + {c^2} - 2a - 4b = 4\). Tính P = a + 2b + 3c khi biểu thức \(\left| {2a + b - 2c + 7} \right|\) đạt giá trị lớn nhất.
Cho hàm số bậc bốn y = f(x) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right) + 1 = 0\) là
Tìm các giá trị của tham số m để hàm số \(y = \frac{1}{2}\ln \left( {{x^2} + 4} \right) - mx + 3\) nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).
Cho hai số thực x,y thay đổi thỏa mãn \(x+y+1=2\left( \sqrt{x-2}+\sqrt{y+3} \right)\).Giá trị lớn nhất của biểu thức \(S={{3}^{x+y-4}}+\left( x+y+1 \right){{2}^{7-x-y}}-3\left( {{x}^{2}}+{{y}^{2}} \right)\) là \(\frac{a}{b}\) với a,b là các số nguyên dương và \(\frac{a}{b}\) tối giản. Tính a+b.
Tiệm cận đứng của đồ thị hàm số \(y = \frac{{x - 1}}{{x + 1}}\) là
Trong không gian Oxyz, cho hai điểm \(A\left( {3;5; - 1} \right)\) và \(B\left( {1;1;3} \right)\). Tọa độ điểm M thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) nhỏ nhất là
Họ nguyên hàm của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 3{\rm{x}} + 2}}\) là:
Cho hàm số \(y = f(x) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình dưới đây
Có tất cả bao nhiêu giá trị nguyên của tham số \(m \in \left( { - 5;5} \right)\) để phương trình \({f^2}(x) - (m + 4)\left| {f(x)} \right| + 2m + 4 = 0\) có 6 nghiệm phân biệt