Cho lăng trụ \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác đều cạnh \(a.\) Hình chiếu của \(A'\) lên mặt phẳng \(\left( ABC \right)\) trùng với trung điểm \(BC.\) Tính khoảng cách d giữa hai đường thẳng \(B'C'\) và \(AA'\) biết góc giữa hai mặt phẳng \(\left( ABB'A' \right)\) và \(\left( A'B'C' \right)\) bằng \({{60}^{0}}.\)
A. \(d=\frac{3a}{4}.\)
B. \(d=\frac{3a\sqrt{7}}{14}.\)
C. \(d=\frac{a\sqrt{21}}{14}.\)
D. \(d=\frac{a\sqrt{3}}{4}.\)
Lời giải của giáo viên
Gọi \(M,M'\) lần lượt là trung điểm của \(BC,B'C'.\)
Gọi \(N,E\) lần lượt là trung điểm của \(AB,BN.\)
Góc giữa hai mặt phẳng \(\left( ABB'A' \right)\) và \(\left( A'B'C' \right)\) bằng góc giữa hai mặt phẳng \(\left( ABB'A' \right)\) và \(\left( ABC \right).\)
Vì \(CN\bot AB\) và \(ME//CN\) nên \(ME\bot AB\left( 1 \right)\)
Mặt khác \(A'M\bot \left( ABC \right)\Rightarrow A'M\bot AB\left( 2 \right)\)
Từ (1) và (2) ta có \(AB\bot \left( A'EM \right)\Rightarrow \widehat{\left( \left( ABB'A' \right);\left( ABC \right) \right)}=\widehat{A'EM}={{60}^{0}}.\)
\(CN=AM=\frac{a\sqrt{3}}{2};ME=\frac{1}{2}CN=\frac{a\sqrt{3}}{4}.\)
Trong tam giác vuông A'EM có \(A'M=ME.\tan {{60}^{0}}=\frac{3a}{4}.\)
Có \(A'M'\bot B'C'\left( 3 \right)\)
\(A'M\bot \left( ABC \right)\Rightarrow A'M\bot \left( A'B'C' \right)\Rightarrow A'M\bot B'C'\left( 4 \right)\)
Từ (3) và (4) suy ra \(B'C'\bot \left( AMM'A' \right).\)
Trong mặt phẳng \(\left( AMM'A' \right)\) từ M' kẻ \(M'K\bot AA'\Rightarrow M'K\) chính là đoạn vuông góc chung giữa AA' và B'C'.
Trong mặt phẳng \(\left( AMM'A' \right)\) từ M kẻ \(MI\bot AA'\Rightarrow MI=M'K.\)
Trong tam giác A'MA vuông tại M có \(\frac{1}{M{{I}^{2}}}=\frac{1}{A{{M}^{2}}}+\frac{1}{MA{{'}^{2}}}=\frac{28}{9{{a}^{2}}}\Rightarrow MI=\frac{3a\sqrt{7}}{14}.\)
Vậy \(d=\frac{3a\sqrt{7}}{14}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có tất cả các cạnh bằng a. Gọi \(M,N\) và \(P\) lần lượt là trung điểm của \(A'B';B'C'\) và \(C'A'.\) Tính thể tích của khối đa diện lồi \(ABC.MNP?\)
Giao của hai đường tiệm cận của đồ thị hàm số \(y=\frac{x-1}{x+2}\) là
Cho hàm số có bảng biến thiên như sau. Tổng các giá trị nguyên của m để đường thẳng \(y=m\) cắt đồ thị hàm số tại ba điểm phân biệt bằng:
Tổng tất cả các giá trị nguyên của m để hàm số \(y=\frac{1}{3}{{x}^{3}}-\left( m-1 \right){{x}^{2}}+x-m\) đồng biến trên tập xác định bằng.
Cho hình hộp \(ABCD.A'B'C'D'\) có thể tích bằng \(V.\) Gọi \(G\) là trọng tâm tam giác \(A'BC\) và \(I'\) là trung điểm của \(A'D'.\) Thể tích khối tứ diện \(GB'C'I'\) bằng:
Hàm số nào dưới đây có đồ thị như hình vẽ bên dưới?
Tính thể tích của khối chóp có chiều cao h và diện tích đáy là B là
Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a,\) cạnh bên bằng \(2a\) và hợp với mặt đáy một góc \({{60}^{0}}.\) Thể tích của khối lăng trụ \(ABC.A'B'C'\) tính theo \(a\) bằng:
Với giá trị nào của \(x\) thì biểu thức: \(f\left( x \right)={{\log }_{6}}\left( 2x-{{x}^{2}} \right)\) xác định?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm tại điểm \({{x}_{0}}.\) Trong các mệnh đề sau, mệnh đề nào đúng?
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng 2a, chiều cao cạnh bên bằng 3a. Tính thể tích \(V\) của khối chóp đã cho.
Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh a, cạnh bên \(SA\) vuông góc với đáy và thể tích của khối chóp đó bằng \(\frac{{{a}^{2}}}{4}.\) Tính cạnh bên \(SA.\)
Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) là \(f'\left( x \right)={{m}^{2}}{{x}^{4}}-m\left( m+2 \right){{x}^{3}}+2\left( m+1 \right){{x}^{2}}-\left( m+2 \right)x+m.\) Số các giá trị nguyên dương của \(m\) để hàm số đồng biến trên \(\mathbb{R}\) là
Cho hàm số bậc bốn \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ. Phương trình \(\left| f\left( x \right) \right|=2\) có số nghiệm là
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ
Hàm số \(f\left( \sin x \right)\) nghịch biến trên các khoảng nào sau đây.