Câu hỏi Đáp án 2 năm trước 33

Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều và \(A'A=A'B=A'C.\) Biết rằng các cạnh bên của lăng trụ tạo với đáy một góc \({{60}^{0}}\) và khoảng cách giữa đường thẳng \(AA'\) và mặt phẳng \(\left( BCC'B' \right)\) bằng 1. Tính thể tích khối lăng trụ đã cho.

A. \(\frac{4\sqrt{3}}{9}\).

B. \(\frac{16\sqrt{3}}{27}\).

Đáp án chính xác ✅

C. \(\frac{16\sqrt{3}}{9}\).

D. \(\frac{16\sqrt{3}}{18}\).

Lời giải của giáo viên

verified HocOn247.com

* Gọi \(H\) là trung điểm \(BC,O\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\)

Vì \(A'A=A'B=A'C\) nên hình chiếu của \(A'\) lên \(\left( ABC \right)\) là điểm \(O\) hay \(A'O\bot \left( ABC \right).\)

Gọi \(E\) là điểm sao cho \(BCAE\) là hình bình hành.

\(\Leftrightarrow d\left( AA';\left( BCC'B' \right) \right)=d\left( \left( AA'E \right);\left( BCC'B' \right) \right)=d\left( H;\left( AA'E \right) \right).\)

* Gọi \(K\) là hình chiếu của \(O\) lên \(AA'.\)

Vì \(\left\{ \begin{array}{l} A'O \bot AE\\ A'O \bot AE \end{array} \right. \Rightarrow \left( {AA'O} \right) \bot AE \Rightarrow OK \bot AE\)

\(\Rightarrow OK\bot \left( AA'E \right).\)

* Ta có: \(\frac{d\left( O;\left( A'AE \right) \right)}{d\left( H;\left( A'AE \right) \right)}=\frac{OK}{d\left( H;\left( A'AE \right) \right)}=\frac{AO}{AH}=\frac{2}{3}\Rightarrow OK=\frac{2}{3}.\)

* Góc giữa \(AA'\) và \(\left( ABC \right)\) là góc giữa \(AA'\) và \(AO\) bằng \({{60}^{0}}.\)

\(\Rightarrow AO=\frac{OK}{\sin {{60}^{0}}}=\frac{4}{3\sqrt{3}}=\frac{AB\sqrt{3}}{3}\Rightarrow AB=\frac{4}{3}.\)

* \(A'O=AO.\tan {{60}^{0}}=\frac{4}{3}.\)

Vậy \(V=A'O.{{S}_{ABC}}=\frac{4}{3}.\frac{{{\left( \frac{4}{3} \right)}^{2}}\sqrt{3}}{4}=\frac{16\sqrt{3}}{27}.\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\) với \(AD=DC=a,AB=2a.\) Hai mặt phẳng \(\left( SAB \right)\) và \(\left( SAD \right)\)cùng vuông góc với đáy. Góc giữa \(SC\) và mặt đáy bằng \({{60}^{0}}.\) Tính khoảng cách giữa hai đường thẳng \(AC\) và \(SB.\)

Xem lời giải » 2 năm trước 47
Câu 2: Trắc nghiệm

Tập nghiệm của bất phương trình \({{\log }_{2}}\left( x\sqrt{{{x}^{2}}+2}+4-{{x}^{2}} \right)+2x+\sqrt{{{x}^{2}}+2}\le 1\) là \(\left( -\sqrt{a};-\sqrt{b} \right].\)

Xem lời giải » 2 năm trước 47
Câu 3: Trắc nghiệm

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A,AB=a\sqrt{3},BC=2a,\) đường thẳng \(AC'\) tạo với mặt phẳng \(\left( BCC'B' \right)\) một góc \({{30}^{0}}.\) Diện tích của mặt cầu ngoại tiếp hình lăng trụ đã cho bằng

Xem lời giải » 2 năm trước 43
Câu 4: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với cạnh \(AD=2CD.\) Biết hai mặt \(\left( SAC \right),\left( SBD \right)\) cùng vuông góc với mặt đáy và đoạn \(BD=6;\) góc giữa \(\left( SCD \right)\) và mặt đáy bằng \({{60}^{0}}.\) Hai điểm \(M,N\) lần lượt là trung điểm của \(SA,SB.\) Thể tích khối đa diện \(ABCDMN\) bằng

Xem lời giải » 2 năm trước 43
Câu 5: Trắc nghiệm

Cho hàm số \(y=-{{x}^{4}}+2{{x}^{2}}\) có đồ thị như hình vẽ bên.

Tìm tất cả các giá trị \(m\) để phương trình \(-{{x}^{4}}+2{{x}^{2}}={{\log }_{2}}m\) có bốn nghiệm thực phân biệt 

Xem lời giải » 2 năm trước 42
Câu 6: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\},\) liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ.

Số giá trị nguyên của tham số \(m\) để phương trình \(f\left( x \right)=m\) có 3 nghiệm phân biệt là

Xem lời giải » 2 năm trước 42
Câu 7: Trắc nghiệm

Cho các số thực dương \(x,y,z\) và thỏa mãn \(x+y+z=3.\) Biểu thức \(P={{x}^{4}}+{{y}^{4}}+8{{z}^{4}}\) đạt GTNN bằng \(\frac{a}{b},\) trong đó \(a,b\) là các số tự nhiên dương, \(\frac{a}{b}\) là phân số tối giản. Tính \(a-b.\)

Xem lời giải » 2 năm trước 42
Câu 8: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right)={{\left( x+2 \right)}^{2}}{{\left( x-2 \right)}^{3}}\left( -x+5 \right).\) Số điểm cực trị của hàm số \(y=f\left( x \right)\) là

Xem lời giải » 2 năm trước 41
Câu 9: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\). Đồ thị của hàm số \(y=f'\left( x \right)\) như hình bên.

Đặt \(h\left( x \right)=f\left( x \right)-\frac{{{x}^{2}}}{2}.\) Mệnh đề nào dưới đây đúng?

Xem lời giải » 2 năm trước 41
Câu 10: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R},\) có đạo hàm \(f'\left( x \right)={{\left( x+1 \right)}^{3}}{{\left( x-2 \right)}^{5}}{{\left( x+3 \right)}^{3}}.\) Số điểm cực trị của hàm số \(f\left( \left| x \right| \right)\) là

Xem lời giải » 2 năm trước 41
Câu 11: Trắc nghiệm

Cho tập \(x=\left\{ 1;2;3;...;8 \right\}\). Gọi \(A\) là tập hợp các số tự nhiên có 8 chữ số đôi một khác nhau từ \(x.\) Lấy ngẫu nhiên một số từ \(A.\) Tính xác suất để số lấy được chia hết cho 2222.

Xem lời giải » 2 năm trước 40
Câu 12: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,\) tam giác \(SAB\) vuông tại \(S\) và nằm trong mặt phẳng vuông góc với đáy. Hình chiếu vuông góc của \(S\) lên cạnh \(AB\) là điểm \(H\) thỏa mãn \(AH=2BH.\) Tính theo \(a\) thể tích \(V\) của khối chóp \(S.ABCD.\)

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Cho mặt nón tròn xoay đỉnh \(S\) đáy là đường tròn tâm \(O\) có thiết diện qua trục là một tam giác đều cạnh bằng \(a.\text{ }A,B\) là hai điểm bất kì trên đường tròn \(\left( O \right).\) Thể tích khối chóp \(S.OAB\) đạt giá trị lớn nhất bằng

Xem lời giải » 2 năm trước 39
Câu 14: Trắc nghiệm

Có bao nhiêu giá trị nguyên \(m\) để hàm số \(y={{x}^{3}}-3{{x}^{2}}-mx+4\) có hai điểm cực trị thuộc khoảng \(\left( -3;3 \right)?\)

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho parabol \(\left( P \right):y=-{{x}^{2}}\) và đồ thị hàm số \(y=a{{x}^{3}}+b{{x}^{2}}+cx-2\) có đồ thị như hình vẽ. Tính giá trị của biểu thức \(P=a-3b-5c.\)

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »