Lời giải của giáo viên
Đáp án A
Điều kiện: \(\left\{ \begin{align} & x>0 \\ & x\ge {{\log }_{5}}m \\ \end{align} \right.\)
Phương trình \(\Leftrightarrow \left[ \begin{align} & {{\log }_{3}}x=1 \\ & {{\log }_{3}}x=-\frac{1}{2} \\ & x={{\log }_{5}}m \\ \end{align} \right.\)
\(\Leftrightarrow \left[ \begin{align} & x=3 \\ & x=\frac{1}{\sqrt{3}} \\ & x={{\log }_{5}}m \\ \end{align} \right.\)
TH1: Nếu m=1 thì \(x={{\log }_{5}}m=0\) (loại) nên phương trình đã cho có 2 nghiệm phân biệt.
TH2: Nếu m>1 thì phương trình đã cho có đúng hai nghiệm phân biệt khi và chỉ khi
\(\frac{1}{\sqrt{3}}\le {{\log }_{5}}m<3\Leftrightarrow {{5}^{\frac{1}{\sqrt{3}}}}\le m<125\). Do \(m\in \mathbb{Z}\Rightarrow m\in \left\{ 3;4;5;...;124 \right\}\)
Vậy có tất cả 123 giá trị nguyên dương của m thoả mãn yêu cầu bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm phức của phương trình \({{z}^{2}}-4z+5=0\). Gái trị của \(z_{1}^{2}+z_{2}^{2}\) bằng
Cho hai hàm số \(y=\frac{x-1}{x}+\frac{x}{x+1}+\frac{x+1}{x+2}+\frac{x+2}{x+3}\) và \(y=\left| x+2 \right|-x-m\) (m là tham số thực) có đồ thị lần lượt là \(\left( {{C}_{1}} \right)\) và \(\left( {{C}_{2}} \right)\). Tập hợp tất cả các giá trị của m để \(\left( {{C}_{1}} \right)\) và \(\left( {{C}_{2}} \right)\) cắt nhau tại đúng 4 điểm phân biệt là
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+2}{1}=\frac{y-1}{-3}=\frac{z-3}{2}\). Vectơ nào dưới đây là một vectơ chỉ phương của d?
Trong không gian Oxyz, hình chiếu vuông góc của điểm \(M\left( 2;1;-1 \right)\) trên trục Oy có tọa độ là
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (minh họa như hình vẽ bên). Khoảng cách từ C đến mặt phẳng (SBD) bằng
Giá trị lớn nhất của hàm số \(f\left( x \right)={{x}^{3}}-3x\) trên đoạn \(\left[ -3\,;\,3 \right]\) bằng
Cho hàm số \(f\left( x \right)\), bảng xét dấu của \({f}'\left( x \right)\) như sau:
Hàm số \(y=f\left( 3-2x \right)\) đồng biến trên khoảng nào dưới đây?
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
Họ tất cả các nguyên hàm của hàm số \(f\left( x \right)=2x+3\) là
Cho số phức z thỏa \((2+i)z-4(\overline{z}-i)=-8+19i\). Môđun của z bằng
Cho đường thẳng y=3x và parabol \(y=2{{x}^{2}}+a\) ( a là tham số thực dương). Gọi \({{S}_{1}}\) và \({{S}_{2}}\) lần lượt là diện tích của 2 hình phẳng được gạch chéo trong hình vẽ bên. Khi \({{S}_{1}}={{S}_{2}}\) thì a thuộc khoảng nào dưới đây?
Cho hình trụ có chiều cao bằng \(3\sqrt{2}\). Cắt hình trụ bởi mặt phẳng song song với trục và cách trục một khoảng bằng 1, thiết diện thu được có diện tích bằng \(12\sqrt{2}\). Diện tích xung quanh của hình trụ đã cho bằng
Với a là số thực dương tùy ý, \({{\log }_{2}}{{a}^{3}}\) bằng