Lời giải của giáo viên
Đặt z = x +yi M (x, y)
\(\begin{array}{l}\left| {z - 2 + 2i} \right| = 1\\ \Rightarrow \left| {x + yi - 2 + 2i} \right| = 1\\ \Rightarrow \left| {\left( {x - 2} \right) + \left( {y + 2} \right)i} \right| = 1\\ \Rightarrow \sqrt {{{(x - 2)}^2} + {{(y + 2)}^2}} = 1\end{array}\)
Tập hợp các điểm M biểu diễn số phức z là đường tròn tâm I(2,-2), bán kính r=1
Ta có \(\left| z \right| = \left| {x = yi} \right| = \sqrt {{x^2} + {y^2}} \)
Lấy H( 0, 0) và M( x, y) thì \(HM = \sqrt {{x^2} + {y^2}} \)
Do M chạy trên đường tròn, H cố định nên MH lớn nhất khi M là giao điểm của HI với đường tròn
Với H( 0, 0) và I( 2, -2) nên \(\overrightarrow {HI} = (2, - 2)\)
Phương trình đường thẳng HI:
\((1)\left\{ \begin{array}{l}x = 2t\\y = - 2t\end{array} \right.\)
Do HI giao với đường tròn nên ta thay (1) vào pt đường tròn, ta được:
\(\begin{array}{l}{\left( {2t - 2} \right)^2} + {\left( { - 2t + 2} \right)^2} = 1\\ \Leftrightarrow 8{\left( {t - 1} \right)^2} = 1\\ \Leftrightarrow {(t - 1)^2} = \dfrac{1}{8}\\ \Leftrightarrow \left[ \begin{array}{l}t - 1 = \dfrac{1}{{2\sqrt 2 }}\\t - 1 = \dfrac{{ - 1}}{{2\sqrt 2 }}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}t = 1 + \dfrac{1}{{2\sqrt 2 }} \\t = 1 - \dfrac{1}{{2\sqrt 2 }} \end{array} \right.\end{array}\)
\( \Rightarrow {M_1}\left( {2 + \dfrac{1}{{\sqrt 2 }}, - 2 - \dfrac{1}{{\sqrt 2 }}} \right)\) \(\Rightarrow H{M_1} = 2\sqrt 2 + 1\)
\(\Rightarrow {M_2}\left( {2 - \dfrac{1}{{\sqrt 2 }}, - 2 + \dfrac{1}{{\sqrt 2 }}} \right) \) \(\Rightarrow H{M_2} = 2\sqrt 2 - 1\)
\( \Rightarrow {\left| z \right|_{{\rm{max}}}} = H{M_1} = 2\sqrt 2 + 1\) với \({M_1}\left( {2 + \dfrac{1}{{\sqrt 2 }}, - 2 - \dfrac{1}{{\sqrt 2 }}} \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Mặt cầu tiếp xúc với các cạnh của tứ diện đều \(ABCD\) cạnh \(a\) có bán kính là?
Cho măt cầu \(\left( S \right)\) tâm \(O\), có bán kính bằng \(r = 5{\rm{ cm}}\). Đường thẳng \(\Delta \) cắt mặt cầu \(\left( S \right)\) theo một dây cung\(AB = 6{\rm{ cm}}\). Khoảng cách từ \(O\) đến đường thẳng \(\Delta \) bằng
Mô đun của số phức z thỏa mãn \(\overline z = 8 - 6i\) là:
Với a, b là các số dương. Giá trị biểu thức \({{{a^{{1 \over 3}}}\sqrt b + {b^{{1 \over 3}}}\sqrt a } \over {\root 6 \of a + \root 6 \of b }}\) là:
Cho số phức z có điểm biểu diễn nằm trên đường thẳng 3x – 4y – 3 =0, \(|z|\) nhỏ nhất bằng:
Mặt cầu \(\left( S \right)\) có thể tích \(36\pi {\rm{ c}}{{\rm{m}}^3}\). Diện tích của mặt cầu \(\left( S \right)\) bằng
Cho hàm số \(y = \dfrac{3 }{{x - 2}}\). Số tiệm cận của đồ thị hàm số bằng :
Trong không gian với hệ toạ độ \(Oxyz\), gọi \(\left( \alpha \right)\)là mặt phẳng song song với mặt phẳng \(\left( \beta \right):2x - 4y + 4z + 3 = 0\) và cách điểm \(A\left( {2; - 3;4} \right)\) một khoảng \(k = 3\). Phương trình của mặt phẳng \(\left( \alpha \right)\) là:
Tỉ số thể tích của khối trụ nội tiếp và khối trụ ngoại tiếp hình lập phương có cạnh bằng \(a\) bằng
Cho \(c = {\log _{15}}3\). Khi đó giá trị của \({\log _{25}}15\) theo c là:
Số phức \(z = \dfrac{{3 + 4i}}{{2 + 3i}} + \dfrac{{5 - 2i}}{{2 - 3i}}\) bằng:
Tìm b, c \( \in R\) để phương trình \(2{z^2} - bz + c = 0\) có hai nghiệm thuần ảo.
Tích phân \(I = \int\limits_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{\sin x}}} \) có giá trị bằng: