Đề thi thử THPT QG năm 2022 môn Toán - Trường THPT Trí Đức
Đề thi thử THPT QG năm 2022 môn Toán
-
Hocon247
-
50 câu hỏi
-
90 phút
-
151 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Cho hàm số y = f(x) có bảng biến thiên cho bởi bảng sau:
Kết luận nào sau đây sai?
Giá trị cực tiểu của hàm số bằng \(0\) nên A sai.
Chọn A
Cho hàm số \(y = \dfrac{3 }{{x - 2}}\). Số tiệm cận của đồ thị hàm số bằng :
\(y = \dfrac{3}{{x - 2}}\)
TXĐ:\(D = R\backslash {\rm{\{ }}2\} \)
\(\left. \begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{3}{{x - 2}} = + \infty \\\mathop {\lim }\limits_{X \to {2^ - }} \dfrac{3}{{x - 2}} = - \infty \end{array} \right\} \) \(\Rightarrow TCĐ:x = 2\)
\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{3}{{x - 2}} = 0\) \( \Rightarrow TCN y=0\)
Cho hàm số \(y = f(x) = {x^3} - 3{x^2} - 4x\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số trên và trục Ox được tính bằng công thức:
Phương trình hoành độ giao điểm \({x^3} - 3{x^2} - 4x = 0\)
\(\Leftrightarrow x\left( {{x^2} - 3x - 4} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 3x - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 4\\x = - 1\end{array} \right.\)
Khi đó diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục Ox được xác định bằng công thức:
\(S = \int\limits_{ - 1}^4 {\left| {f\left( x \right)} \right|} \,dx\)
Mà ta có: \(f\left( x \right) = {x^3} - 3{x^2} - 4x = x\left( {x + 1} \right)\left( {x - 4} \right)\)
+ Với \( - 1 < x < 0 \Rightarrow f\left( x \right) > 0\)
+ Với \(0 < x < 4 \Rightarrow f\left( x \right) < 0\)
Khi đó ta có: \(S = \int\limits_{ - 1}^4 {\left| {f\left( x \right)} \right|} \,dx\)\(S = \int\limits_{ - 1}^4 {\left| {f\left( x \right)} \right|} \,dx = \int\limits_{ - 1}^0 {f\left( x \right)} \;dx - \int\limits_0^4 {f\left( x \right)} \;dx\)
Chọn đáp án D.
Cho \(I = \int\limits_1^2 {2x\sqrt {{x^2} - 1} \,dx\,,\,\,u = {x^2} - 1} \). Khẳng định nào dưới đây sai ?
Đặt \(u = {x^2} - 1 \Rightarrow du = 2x\,dx\)
Đổi cận: \(\left\{ \begin{array}{l}x = 1 \to u = 0\\x = 2 \to u = 3\end{array} \right.\)
Khi đó \(I = \int\limits_1^2 {2x\sqrt {{x^2} - 1} \,dx\, = \int\limits_0^3 {\sqrt u } } \,du\)
\( \to \) Đáp án C sai
Chọn đáp án C.
Hình nào sau đây có mặt phẳng đối xứng?
Tứ diện đều có mặt phẳng đối xứng là mặt phẳng đi qua 1 cạnh và trung điểm cạnh đối diện. Vì tứ diện đều có 6 cạnh nên có 6 mặt phẳng đối xứng.
Chọn A.
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình vuông tại \(A\) và \(D\) thỏa mãn \(SA \bot \left( {ABCD} \right)\) và \(AB = 2AD = 2CD = 2a = \sqrt 2 SA\). Thể tích khối chóp \(S.BCD\) là:
Ta có: \({S_{ABCD}} = \dfrac{1}{2}\left( {AB + CD} \right).AD = \dfrac{1}{2}\left( {2a + a} \right)a = \dfrac{{3{a^2}}}{2}\)
\({S_{\Delta ABD}} = \dfrac{1}{2}AD.AB = \dfrac{1}{2}a.2a = {a^2}\)
\( \Rightarrow {S_{BCD}} = {S_{ABCD}} - {S_{ABD}} = \dfrac{{3{a^2}}}{2} - {a^2} = \dfrac{{{a^2}}}{2}\)
\(SA = \dfrac{{2a}}{{\sqrt 2 }} = a\sqrt 2 \)
\( \Rightarrow {V_{S.BCD}} = \dfrac{1}{3}SA.{S_{BCD}} = \dfrac{1}{3}a\sqrt 2 .\dfrac{{{a^2}}}{2} = \dfrac{{{a^3}\sqrt 2 }}{6}\)
Chọn B.
Tỉ số thể tích của khối trụ nội tiếp và khối trụ ngoại tiếp hình lập phương có cạnh bằng \(a\) bằng
Khối trụ nội tiếp có bán kính \(r = \dfrac{a}{2}\) , chiều cao \(h = a\)
Thể tích của khối trụ nội tiếp là: \({V_1} = \pi {r^2}.h = \pi .{\left( {\dfrac{a}{2}} \right)^2}.a = \dfrac{{\pi {a^3}}}{4}\)
Khối trụ ngoại tiếp có bán kính \(R = \dfrac{{a\sqrt 2 }}{2}\) , chiều cao \(h = a\)
Thể tích của khối trụ ngoại tiếp là: \({V_2} = \pi {R^2}h = \pi {\left( {\dfrac{{a\sqrt 2 }}{2}} \right)^2}.a = \dfrac{{\pi {a^3}}}{2}\)
\( \Rightarrow \dfrac{{{V_1}}}{{{V_2}}} = \dfrac{1}{2}\) .
Chọn A
Mặt cầu tâm \(I\left( {2;4;6} \right)\) tiếp xúc với trục Oz có phương trình:
Mặt cầu tâm \(I\left( {2;4;6} \right)\), bán kính R và tiếp xúc trục Ox\( \Leftrightarrow R = d\left( {I;Oz} \right)\)
\( \Leftrightarrow R = \sqrt {x_I^2 + y_I^2} = \sqrt {20} \). Vậy \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 20.\)
Lựa chọn đáp án A.
Với a, b là các số dương. Giá trị biểu thức \({{{a^{{1 \over 3}}}\sqrt b + {b^{{1 \over 3}}}\sqrt a } \over {\root 6 \of a + \root 6 \of b }}\) là:
Ta có: \(\dfrac{{{a^{\dfrac{1}{3}}}\sqrt b + {b^{\dfrac{1}{3}}}\sqrt a }}{{\sqrt[6]{a} + \sqrt[6]{b}}} \)
\(= \dfrac{{{a^{\dfrac{1}{3}}}{b^{\dfrac{1}{2}}} + {b^{\dfrac{1}{3}}}{a^{\dfrac{1}{2}}}}}{{{a^{\dfrac{1}{6}}} + {b^{\dfrac{1}{6}}}}} \)
\(= \dfrac{{{a^{\dfrac{1}{3}}}{b^{\dfrac{1}{3}}}\left( {{a^{\dfrac{1}{6}}} + {b^{\dfrac{1}{6}}}} \right)}}{{{a^{\dfrac{1}{6}}} + {b^{\dfrac{1}{6}}}}}\)
\(= {a^{\dfrac{1}{3}}}{b^{\dfrac{1}{3}}} = \sqrt[3]{{ab}}\)
Chọn đáp án B.
Nghiệm của bất phương trình \({(8,5)^{{{x - 3} \over {{x^2} + 1}}}} < 1\) là:
Ta có: \({(8,5)^{\dfrac{{x - 3}}{{{x^2} + 1}}}} < 1 \)
\(\Leftrightarrow \dfrac{{x - 3}}{{{x^2} + 1}} < 0\)
\(\Leftrightarrow x - 3 < 0 \Leftrightarrow x < 3.\)
Chọn đáp án D.
Tìm b, c \( \in R\) để phương trình \(2{z^2} - bz + c = 0\) có hai nghiệm thuần ảo.
Để pt \(2{z^2} - bz + c = 0\)có hai nghiệm thuần ảo
\(\begin{array}{l} \Rightarrow \Delta < 0\\ \Rightarrow {b^2} - 4.2.c < 0\\ \Rightarrow {b^2} - 8c < 0\end{array}\)
Số phức \(z = \dfrac{{3 + 4i}}{{2 + 3i}} + \dfrac{{5 - 2i}}{{2 - 3i}}\) bằng:
\(\begin{array}{l}z = \dfrac{{3 + 4i}}{{2 + 3i}} + \dfrac{{5 - 2i}}{{2 - 3i}}\\\,\,\,\, = \dfrac{{\left( {3 + 4i} \right)\left( {2 - 3i} \right) + \left( {5 - 2i} \right)\left( {2 + 3i} \right)}}{{4 - 9{i^2}}}\\\,\,\,\, = \dfrac{{6 - i - 12{i^2} + 10 + 11i - 6{i^2}}}{{13}}\\\,\,\,\, = \dfrac{{34}}{{13}} + \dfrac{{10}}{{13}}i\end{array}\)
Mặt cầu \(\left( S \right)\) có thể tích \(36\pi {\rm{ c}}{{\rm{m}}^3}\). Diện tích của mặt cầu \(\left( S \right)\) bằng
\(\dfrac{4}{3}\pi {R^3} = 36\pi \Rightarrow R = 3\,cm\)
Diện tích mặt cầu là: \(S = 4\pi {R^2} = 4\pi {.3^2} = 36\pi \left( {c{m^2}} \right)\)
Chọn B.
Mặt cầu \(\left( S \right)\) có diện tích \(16\pi {\rm{ c}}{{\rm{m}}^2}\). Diện tích của đường tròn lớn của mặt cầu \(\left( S \right)\) bằng
\(4\pi {R^2} = 16\pi \Rightarrow R = 2\,cm\)
Diện tích của đường tròn lớn nhất của mặt cầu là: \(S = \pi {R^2} = \pi {.2^2} = 4\pi \left( {c{m^2}} \right)\)
Chọn A.
Cho mặt cầu \(\left( S \right)\): \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\). Phương trình mặt cầu nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua mặt phẳng (Oxy):
Mặt cầu \(\left( S \right)\) tâm \(I\left( {1;2;3} \right)\), bán kính \(R = 3\). Do mặt cầu \(\left( {S'} \right)\) đối xứng với \(\left( S \right)\) qua mặt phẳng (Oxy) nên tâm I' của \(\left( {S'} \right)\) đối xứng với I qua (Oxy), bán kính \(R' = R = 3\).
Ta có : \(I'\left( {1;2; - 3} \right)\). Vậy \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 9.\)
Lựa chọn đáp án D.
Lưu ý: Để ý thấy rằng trung điểm \(II'\) thuộc mặt phẳng \(\left( {Oxy} \right)\) và \(\overrightarrow {II'} \bot \left( {Oxy} \right)\). Cả 4 đáp án trên đều có thể dễ dàng tìm được tọa độ \(I'\) nên nếu tinh ý ta sẽ tiết kiệm được thời gian hơn trong việc tìm đáp án.
Cho mặt cầu \(\left( S \right)\): \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 4\). Phương trình mặt cầu nào sau đây là phương trình mặt cầu đối xứng với mặt cầu (S) qua trục Oz:
Mặt cầu \(\left( S \right)\) tâm \(I\left( { - 1;1;2} \right)\), bán kính \(R = 2\). Do mặt cầu \(\left( {S'} \right)\) đối xứng với \(\left( S \right)\) qua trục Oz nên tâm I' của \(\left( {S'} \right)\) đối xứng với I qua trục Oz, bán kính \(R' = R = 2\).
Ta có : \(I'\left( {1; - 1;2} \right)\). Vậy \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 4.\)
Lựa chọn đáp án A.
Đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{1 - 2x} }{ { - x + 2}}\) là:
\(y = \dfrac{{1 - 2x}}{{ - x + 2}}\)
TXĐ:\(D = R\backslash {\rm{\{ }}2\} \)
\(\begin{array}{l}\mathop {\lim }\limits_{X \to \pm \infty } \dfrac{{1 - 2x}}{{ - x + 2}} = 2 \Rightarrow TCN:y = 2\\\left. \begin{array}{l}\mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{1 - 2x}}{{ - x + 2}} = - \infty \\\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{1 - 2x}}{{ - x + 2}} = + \infty \end{array} \right\} \\\Rightarrow TCĐ:x = 2\end{array}\)
Hàm số \(y = {x^3} - 3{x^2} + 3x - 4\) có bao nhiêu cực trị ?
\(y = {x^3} - 3{x^2} + 3x - 4\)
\(TXD:D = R\)
\(\begin{array}{l}y' = 3{x^2} - 6x + 3\\y' = 0 \Leftrightarrow 3{x^2} - 6x + 3 = 0\\ \Leftrightarrow x = 1\end{array}\)
Hàm số đồng biến trên R nên không có cực trị.
Cho \(c = {\log _{15}}3\). Khi đó giá trị của \({\log _{25}}15\) theo c là:
Ta có: \(c = {\log _{15}}3 \)
\(\Leftrightarrow \dfrac{1}{c} = {\log _3}15 = {\log _3}\left( {3.5} \right) = {\log _3}5 + 1\)
\( \Rightarrow {\log _3}5 = \dfrac{1}{c} - 1 = \dfrac{{1 - c}}{c} \)
\(\Leftrightarrow {\log _5}3 = \dfrac{c}{{1 - c}}\)
Khi đó ta có:
\({\log _{25}}15 = \dfrac{1}{2}{\log _5}\left( {3.5} \right) \)
\(\;= \dfrac{1}{2}\left( {1 + {{\log }_5}3} \right) \)
\(\;= \dfrac{1}{2}\left( {1 + \dfrac{c}{{1 - c}}} \right) \)
\(\;= \dfrac{1}{{2\left( {1 - c} \right)}}\)
Chọn đáp án C.
Tìm khẳng định sai trong các khẳng định sau:
+ Áp dụng tính chất của tích phân, ta có \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)\,} \right]dx} = \int\limits_a^b {f\left( {x\,} \right)dx + \int\limits_a^b {g\left( x \right)\,dx} } \)
\( \to \) Khẳng định A đúng.
+ Tính chất của tích phân: Nếu \(f\left( x \right) \ge 0\) trên đoạn \(\left[ {a;b} \right]\) thì \(\int\limits_a^b {f\left( x \right)\,dx \ge 0} \)
\( \to \) Khẳng định C đúng.
+ Ta có: \(\int {\dfrac{{u'\left( x \right)dx}}{{u\left( x \right)}} = \int {\dfrac{{d\left( {u\left( x \right)} \right)}}{{u\left( x \right)}}} } = \ln \left| {u\left( x \right)} \right| + C\)
\( \to \) Khẳng định D đúng.
\( \to \) Khẳng định B sai.
Chọn đáp án B.
Cho hai nghiệm \({z_1} = - \sqrt 3 + i\sqrt 2 \,,\,\,{z_2} = - \sqrt 3 - i\sqrt 2 \). Phương trình bậc hai có nghiệm là hai nghiệm trên là:
PT bậc hai có 2 nghiệm \({z_1} = - \sqrt 3 + i\sqrt 2 ;{z_2} = - \sqrt 3 - i\sqrt 2 \):
\(\begin{array}{l}\left[ {z - \left( { - \sqrt 3 + i\sqrt 2 } \right)} \right]\left[ {z - \left( { - \sqrt 3 - i\sqrt 2 } \right)} \right] = 0\\ \Leftrightarrow {z^2} + 2\sqrt 3 z + 3 - 2{i^2} = 0\\ \Leftrightarrow {z^2} + 2\sqrt 3 z + 5 = 0\end{array}\)
Số mặt phẳng đối xứng của mặt cầu là:
Mọi mặt phẳng đi qua tâm của mặt cầu đều là mặt phẳng đối xứng của mặt cầu.
Vậy có vô số mặt phẳng đối xứng.
Chọn D.
Cho măt cầu \(\left( S \right)\) tâm \(O\), có bán kính bằng \(r = 5{\rm{ cm}}\). Đường thẳng \(\Delta \) cắt mặt cầu \(\left( S \right)\) theo một dây cung\(AB = 6{\rm{ cm}}\). Khoảng cách từ \(O\) đến đường thẳng \(\Delta \) bằng
Khoảng cách từ O đến \(\Delta \) là: \(d\left( {O,\Delta } \right) = \sqrt {{5^2} - {3^2}} = 4\,cm\)
Chon D.
Đường tròn giao tuyến của \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 16\) khi cắt bởi mặt phẳng (Oxy) có chu vi bằng:
Mặt cầu \(\left( S \right)\) tâm \(I\left( {1;2;3} \right)\), bán kính \(R = 4\). Ta có : \(d\left( {I;\left( {Oxy} \right)} \right) = \left| {{z_I}} \right| = 3\).
Gọi \(r\) là bán kính đường tròn (C) giao tuyến của mặt cầu \(\left( S \right)\) và mặt phẳng (Oxy), ta suy ra :
\(r = \sqrt {{R^2} - {{\left[ {d\left( {I;\left( {Oxy} \right)} \right)} \right]}^2}} = \sqrt 7 \). Vậy chu vi (C) bằng : \(2\sqrt 7 \pi \).
Lựa chọn đáp án B.
Tìm nguyên hàm của hàm số \(f(x) = {e^x}\left( {1 - 3{e^{ - 2x}}} \right)\).
Ta có: \(\int {{e^x}\left( {1 - 3{e^{ - 2x}}} \right)\,dx} = \int {\left( {1 - \dfrac{3}{{{{\left( {{e^x}} \right)}^2}}}} \right)} \;d\left( {{e^x}} \right)\)\(\, = {e^x} + \dfrac{3}{{{e^x}}} + C = {e^x} + 3{e^{ - x}} + C\)
Chọn đáp án B.
Cho \(\int\limits_1^4 {f(x)\,dx = 9} \). Tính tích phân \(I = \int\limits_0^1 {f(3x + 1)\,dx} \) .
Đặt \(u = 3x + 1 \)
\(\Rightarrow du = d\left( {3x + 1} \right) = 3\,dx \)
\(\Leftrightarrow dx = \dfrac{{du}}{3}\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \to u = 1\\x = 1 \to u = 4\end{array} \right.\)
Khi đó ta có: \(I = \dfrac{1}{3}\int\limits_1^4 {f\left( u \right)\,} du = \dfrac{1}{3}\int\limits_1^4 {f\left( x \right)\,dx} \)\(\,= \dfrac{1}{3}.9 = 3.\)
Chọn đáp án B.
Cho f(x), g(x) là hai hàm số liên tục trên R và \(k \ne 0\). Chọn khẳng định sai trong các khẳng định sau đây .
Áp dụng tính chất của nguyên hàm ta có:
+ \(\int {k.f\left( x \right)\,dx = k\int {f\left( x \right)\,dx} } \)
+ \(\int {f'\left( x \right)\,dx} = f\left( x \right) + C\)
+ \(\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]\,dx = \int {f\left( x \right)\,dx \pm \int {g\left( x \right)\,dx} } } \)
\( \to \) Khẳng định A sai
Chọn đáp án A.
Cho số thực a thỏa mãn \(\int\limits_{ - 1}^a {{e^{x + 1}}} \,dx = {e^2} - 1\). Khi đó a có giá trị bằng:
Ta có: \(\int\limits_{ - 1}^a {{e^{x + 1}}} \,dx \)
\(= e\int\limits_{ - 1}^a {{e^x}\,d} \left( x \right)\)
\(= e\left( {{e^x}} \right)\left| {_{ - 1}^a} \right. \)
\(= e\left( {{e^a} - {e^{ - 1}}} \right) + C = {e^{a + 1}} - e + C\)
Khi đó \(a + 1 = 2 \Rightarrow a = 1\)
Chọn đáp án C.
Giá trị cực đại của hàm số \(y = {x^3} - 12x - 1\).
\(y = {x^3} - 12x - 1\)
\(TXD:D = R\)
\(\begin{array}{l}y' = 3{x^2} - 12\\y' = 0 \Leftrightarrow 3{x^2} - 12 = 0\\ \Leftrightarrow {x^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 2\end{array} \right.\end{array}\)
\(\begin{array}{l}{x_{cd}} = - 2 \Rightarrow {y_{cd}} = 15\\{x_{ct}} = 2 \Rightarrow {y_{ct}} = - 17\end{array}\)
Đồ thi hàm số nào dưới đây có tiệm cận đứng
Đồ thị hàm đa thức không có đường tiệm cận nên loại A, B.
Đáp án C có đường tiệm cận đứng là x=1 nên thỏa mãn.
Ta có: \({\log _{\sqrt 3 }}50 = 2{\log _3}50 \)\(\,= 2\left( {{{\log }_3}5 + {{\log }_3}10} \right)\)
Mà \(a = {\log _3}15 = {\log _3}\left( {3.5} \right) = 1 + {\log _3}5\)\(\, \Rightarrow {\log _3}5 = a - 1\)
Khi đó \({\log _{\sqrt 3 }}50 = 2\left( {a - 1 + b} \right) = 2a + 2b - 2\)
Chọn đáp án C.
Với 0 < a < b, \(m \in {N^*}\) thì:
Với \(0 < a < b\), \(m \in {N^*}\) ta có \({a^m} < {b^m}\)
Chọn đáp án A.
Cho số phức thỏa mãn điều kiện \(|z - 2 + 2i| = 1\). Tìm giá trị lớn nhất của \(|z|\).
Đặt z = x +yi M (x, y)
\(\begin{array}{l}\left| {z - 2 + 2i} \right| = 1\\ \Rightarrow \left| {x + yi - 2 + 2i} \right| = 1\\ \Rightarrow \left| {\left( {x - 2} \right) + \left( {y + 2} \right)i} \right| = 1\\ \Rightarrow \sqrt {{{(x - 2)}^2} + {{(y + 2)}^2}} = 1\end{array}\)
Tập hợp các điểm M biểu diễn số phức z là đường tròn tâm I(2,-2), bán kính r=1
Ta có \(\left| z \right| = \left| {x = yi} \right| = \sqrt {{x^2} + {y^2}} \)
Lấy H( 0, 0) và M( x, y) thì \(HM = \sqrt {{x^2} + {y^2}} \)
Do M chạy trên đường tròn, H cố định nên MH lớn nhất khi M là giao điểm của HI với đường tròn
Với H( 0, 0) và I( 2, -2) nên \(\overrightarrow {HI} = (2, - 2)\)
Phương trình đường thẳng HI:
\((1)\left\{ \begin{array}{l}x = 2t\\y = - 2t\end{array} \right.\)
Do HI giao với đường tròn nên ta thay (1) vào pt đường tròn, ta được:
\(\begin{array}{l}{\left( {2t - 2} \right)^2} + {\left( { - 2t + 2} \right)^2} = 1\\ \Leftrightarrow 8{\left( {t - 1} \right)^2} = 1\\ \Leftrightarrow {(t - 1)^2} = \dfrac{1}{8}\\ \Leftrightarrow \left[ \begin{array}{l}t - 1 = \dfrac{1}{{2\sqrt 2 }}\\t - 1 = \dfrac{{ - 1}}{{2\sqrt 2 }}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}t = 1 + \dfrac{1}{{2\sqrt 2 }} \\t = 1 - \dfrac{1}{{2\sqrt 2 }} \end{array} \right.\end{array}\)
\( \Rightarrow {M_1}\left( {2 + \dfrac{1}{{\sqrt 2 }}, - 2 - \dfrac{1}{{\sqrt 2 }}} \right)\) \(\Rightarrow H{M_1} = 2\sqrt 2 + 1\)
\(\Rightarrow {M_2}\left( {2 - \dfrac{1}{{\sqrt 2 }}, - 2 + \dfrac{1}{{\sqrt 2 }}} \right) \) \(\Rightarrow H{M_2} = 2\sqrt 2 - 1\)
\( \Rightarrow {\left| z \right|_{{\rm{max}}}} = H{M_1} = 2\sqrt 2 + 1\) với \({M_1}\left( {2 + \dfrac{1}{{\sqrt 2 }}, - 2 - \dfrac{1}{{\sqrt 2 }}} \right)\)
Phần thực và phần ảo của số phức \(z = {\left( {1 + \sqrt 3 i} \right)^2}\) là:
\(z = {\left( {1 + i\sqrt 3 } \right)^2} = 1 + 2\sqrt 3 i + 3{i^2}\)\(\, = - 2 + 2\sqrt 3 i\)
phần thực: -2 ; phần ảo: \(2\sqrt 3 \)
Chọn C
Có tất cả bao nhiêu khối đa diện đều?
Có 5 và chỉ 5 khối đa diện đều.
Chọn A.
Mặt cầu tiếp xúc với các cạnh của tứ diện đều \(ABCD\) cạnh \(a\) có bán kính là?
Do tứ diện ABCD đều nên tâm mặt cầu tiếp xúc với 6 cạnh cũng trùng với tâm mặt cầu ngoại tiếp tứ diện.
Gọi H là tâm đường tròn ngoại tiếp tam giác BCD. Suy ra H chính là trọng tâm tam giác BCD.
Khi đó AH chính là trục đường tròn ngoài tiếp tam giác BCD.
Gọi K là trung điểm của AB.
Mặt phẳng trung trực của AB qua K cắt AH tại I chính là tâm mặt cầu ngoại tiếp tứ diện đều ABCD.
Ta có: \(r = IK\). Mặt khác \(\Delta AKI\) đồng dạng \(\Delta AHB\)
\(\begin{array}{l} \Rightarrow \dfrac{{AK}}{{AH}} = \dfrac{{AI}}{{AB}} = \dfrac{{IK}}{{HB}}\\ \Leftrightarrow \dfrac{{AB}}{{2AH}} = \dfrac{{IK}}{{HB}}\end{array}\)
Trong đó: \(AB = a,\,HB = \dfrac{{a\sqrt 3 }}{3}\)
\(AH = \sqrt {A{B^2} - H{B^2}} = \dfrac{{a\sqrt 6 }}{3}\)
\(\Rightarrow r = IK = \dfrac{{a\sqrt 2 }}{4}.\)
Chọn B.
Trong không gian với hệ toạ độ \(Oxyz\),tọa độ điểm \(M\) nằm trên trục \(Oy\) và cách đều hai mặt phẳng: \(\left( P \right):x + y - z + 1 = 0\) và \(\left( Q \right):x - y + z - 5 = 0\) là:
Ta có \(M \in Oy \Rightarrow M\left( {0;m;0} \right)\)
Giả thiết có \(d\left( {M,\left( P \right)} \right) = d\left( {M,\left( Q \right)} \right)\)\( \Leftrightarrow \dfrac{{\left| {m + 1} \right|}}{{\sqrt 3 }} = \dfrac{{\left| { - m - 5} \right|}}{{\sqrt 3 }}\)\( \Leftrightarrow m = - 3\)
Vậy \(M\left( {0; - 3;0} \right)\)
Chọn khẳng định đúng trong các khẳng định sau:
Vì mỗi mặt cảu hình bát diện đều là một tam giác đều và mỗi đỉnh của hình bát diện đều là đỉnh chung của 4 cạnh.
Vậy hình bát diện đều là đa diện đều loại {3;4}
Chọn D.
Cho hàm số \(y = \dfrac{{x + 1} }{ {x - 1}}\). Khẳng định nào sau đây là đúng ?
\(y = \dfrac{{x + 1}}{{x - 1}}\)
TXĐ :\(D = R\backslash {\rm{\{ }}1\} \)
\(y' = \dfrac{{ - 2}}{{{{\left( {x - 1} \right)}^2}}} < 0\forall x \ne 1\)
Hàm nghịch biến trên \(( - \infty ,1)\) và\((1, + \infty )\)
Cho hàm số y = f(x) xác định trên khoảng \((0; + \infty )\) và thỏa mãn \(\mathop {\lim }\limits_{x \to + \infty } f(x) = 1\). Hãy chọn mệnh đề đúng trong các mệnh đề sau:
\(\mathop {\lim }\limits_{x \to + \infty } f(x) = 1\) nên \(y = 1\) là đường TCN của đồ thị hàm số \(y = f\left( x \right)\)
Tích phân \(I = \int\limits_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{\sin x}}} \) có giá trị bằng:
Ta có:
\(\begin{array}{l}I = \int\limits_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{\sin x}}} = \int\limits_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}} {\dfrac{{\sin x}}{{{{\sin }^2}x}}} \,dx\\ = - \int\limits_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}} {\dfrac{{d\left( {\cos x} \right)}}{{1 - {{\cos }^2}x}}} \\ = - \dfrac{1}{2}\int\limits_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}} {\left( {\dfrac{1}{{1 - \cos x}} + \dfrac{1}{{1 + \cos x}}} \right)} \;d\left( {\cos x} \right)\\ = \dfrac{1}{2}\int\limits_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}} {\dfrac{1}{{1 - \cos x}}d\left( {1 - \cos x} \right)} - \dfrac{1}{2}\int\limits_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \cos x}}d\left( {1 + \cos x} \right)} \\ = \dfrac{1}{2}\ln \left| {1 - \cos x} \right|\left| {_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}}} \right. - \dfrac{1}{2}\ln \left| {1 + \cos x} \right|\left| {_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}}} \right.\\ = \left( {\dfrac{1}{2}\ln \dfrac{1}{2}} \right) - \dfrac{1}{2}\ln \dfrac{3}{2} = \dfrac{1}{2}\ln \dfrac{1}{3}\end{array}\)
Chọn đáp án D.
Tích phân \(I = \int\limits_1^e {2x\left( {1 - \ln x} \right)\,dx} \) bằng :
Ta có: \(I = \int\limits_1^e {2x\left( {1 - \ln x} \right)\,dx} \)\(\, = \int\limits_1^e {2x\,dx} - 2\int\limits_1^e {x\ln \,dx}\)\(\, = {x^2}\left| {_1^e} \right. - 2\int\limits_1^e {x\ln \,dx} \)
Đặt \({I_1} = \int\limits_1^e {x\ln x\,dx} \)
Ta có:
\({I_1} = \int\limits_1^e {x\ln x\,dx} = \left( {\dfrac{{{x^2}}}{2}\ln x} \right)\left| \begin{array}{l}^e\\_1^{}\end{array} \right. - \int\limits_1^e {\dfrac{x}{2}dx} \)
\(= \left( {\dfrac{{{x^2}}}{2}\ln x} \right)\left| \begin{array}{l}^e\\_1^{}\end{array} \right. - \left( {\dfrac{{{x^2}}}{4}} \right)\left| \begin{array}{l}_{}^e\\_1^{}\end{array} \right.\)
\( = \dfrac{e^2}{2}\ln e - \left( {\dfrac{e^2}{4} - \dfrac{1}{4}} \right) = \dfrac{e^2}{2}+\dfrac {1}{4}\)
Khi đó ta có: \(I = {e^2} - 1 - 2.\left( {\dfrac{{{e^2}}}{4} + \dfrac{1}{4}} \right) = \dfrac{{{e^2} - 3}}{2}\)
Cho khối hộp ABCD. A’B’C’D’. Gọi O là giaocủa AC và BD. Tính tỷ số thể tích của khối chóp O. A’B’C’D’ và khối chóp đã cho.
Khối chóp O. A’B’C’ D’ và khối hộp đã cho có cùng đáy là tứ giác A’B’C’D’ và cùng chiều cao là khoảng cách từ O đến mp(A’B’C’ D’) nên:
\(\begin{array}{l}{V_{O.A'B'C'D'}} = \dfrac{1}{3}{V_{ABCD.A'B'C'D'}}\\ \Rightarrow \dfrac{{{V_{O.A'B'C'D'}}}}{{{V_{ABCD.A'B'C'D'}}}} = \dfrac{1}{3}\end{array}\)
Chọn A
Trong không gian với hệ toạ độ \(Oxyz\), gọi \(\left( \alpha \right)\)là mặt phẳng song song với mặt phẳng \(\left( \beta \right):2x - 4y + 4z + 3 = 0\) và cách điểm \(A\left( {2; - 3;4} \right)\) một khoảng \(k = 3\). Phương trình của mặt phẳng \(\left( \alpha \right)\) là:
Vì \(\left( \alpha \right)//\left( \beta \right)\)\( \Rightarrow \left( \alpha \right):2x - 4y + 4z + m = 0\)\(\left( {m \ne 3} \right)\)
Giả thiết có \(d\left( {A,\left( \alpha \right)} \right) = 3\)\( \Leftrightarrow \dfrac{{\left| {32 + m} \right|}}{6} = 3\)\( \Leftrightarrow \left[ \begin{array}{l}m = - 14\\m = - 50\end{array} \right.\)
Vậy \(\left( \alpha \right):x - 2y + 2z - 7 = 0\), \(\left( \alpha \right):x - 2y + 2z - 25 = 0\)
Nếu n chẵn thì điều kiện để \(\root n \of b \) có nghĩa là:
Với n chẵn thì điều kiện để \(\sqrt[n]{b}\) có nghĩa là \(b \ge 0\)
Chọn đáp án D.
Chọn mệnh đề đúng:
Ta có:
+ \(\left\{ {\begin{array}{*{20}{l}}{{2^{{{\log }_2}3}} = 3}\\{0 < {{\log }_5}3 < {{\log }_3}5 \Rightarrow {5^{{{\log }_3}5}} > {5^{{{\log }_5}3}} = 3}\end{array}} \right. \to \) Đáp án A sai.
+ \(\left\{ \begin{array}{l}{2^{{{\log }_2}3}} = 3\\{5^{{{\log }_5}3}} = 3\end{array} \right. \to \) Đáp án B đúng.
Chọn đáp án B.
Cho số phức z có điểm biểu diễn nằm trên đường thẳng 3x – 4y – 3 =0, \(|z|\) nhỏ nhất bằng:
\(\left( \Delta \right):3x - 4y - 3 = 0\)
Đặt z= x+yi
\(\left| z \right| = \left| {x + yi} \right| = \sqrt {{x^2} + {y^2}} \)
L ấy O(0, 0).
Ta có |z|min khi kh oảng c ách t ừ O đ ến \(\left( \Delta \right)\) l à ng ắn nh ất
\({\left| z \right|_{\min }} = d(O',\Delta ) = \dfrac{{\left| {3.0 - 4.0 - 3} \right|}}{{\sqrt {{3^2} + {4^2}} }} \)\(\,= \dfrac{3}{5}\)
Mô đun của số phức z thỏa mãn \(\overline z = 8 - 6i\) là:
\(\left| z \right| = \left| {\overline z } \right| = \sqrt {{8^2} + {6^2}} = 10\)
Trong không gian với hệ toạ độ \(Oxyz\),cho hai đường thẳng \({d_1},{d_2}\)lần lượt có phương trình \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y - 2}}{1} = \dfrac{{z - 3}}{3}\), \({d_2}:\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{{ - 1}} = \dfrac{{z - 1}}{4}\). Phương trình mặt phẳng \(\left( \alpha \right)\) cách đều hai đường thẳng \({d_1},{d_2}\) là:
Ta có \({d_1}\) đi qua \(A\left( {2;2;3} \right)\) và có \(\overrightarrow {{u_{{d_1}}}} = \left( {2;1;3} \right)\), \({d_2}\) đi qua \(B\left( {1;2;1} \right)\) và có \(\overrightarrow {{u_{{d_2}}}} = \left( {2; - 1;4} \right)\)
\(\overrightarrow {AB}= \left( { - 1;1; - 2} \right);\left[ {\overrightarrow {{u_{{d_1}}}}; \overrightarrow {{u_{{d_2}}}} } \right] = \left( {7; - 2; - 4} \right)\)
\( \Rightarrow \left[ {\overrightarrow {{u_{{d_1}}}}; \)\(\overrightarrow {{u_{{d_2}}}}} \right]\overrightarrow {AB}= - 1 \ne 0\) nên \({d_1},{d_2}\) chéo nhau.
Do \(\left( \alpha \right)\) cách đều \({d_1},{d_2}\) nên \(\left( \alpha \right)\) song song với \({d_1},{d_2}\)\( \Rightarrow \overrightarrow {{n_\alpha }} = \left[ {\overrightarrow {{u_{{d_1}}}} ;\overrightarrow {{u_{{d_2}}}} } \right] = \left( {7; - 2; - 4} \right)\)
\( \Rightarrow \left( \alpha \right)\) có dạng \(7x - 2y - 4z + d = 0\)
Theo giả thiết thì \(d\left( {A,\left( \alpha \right)} \right) = d\left( {B,\left( \alpha \right)} \right)\)\( \Leftrightarrow \dfrac{{\left| {d - 2} \right|}}{{\sqrt {69} }} = \dfrac{{\left| {d - 1} \right|}}{{\sqrt {69} }} \Leftrightarrow d = \dfrac{3}{2}\)
\( \Rightarrow \left( \alpha \right):14x - 4y - 8z + 3 = 0\)
Trong không gian \({\left( {x + 4} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 6} \right)^2} = 18.\), cho mặt phẳng \({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = 9.\): \({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = 16.\) và đường thẳng \(d\):\(N( - 5;7;0)\). Với giá trị nào của \(\vec u = (2; - 2;1)\)thì \(\overrightarrow {MN} = ( - 9;6; - 6)\)cắt \(H\)
\({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = 18.\) có VTPT \(Oxyz\)
\({x^2} + {y^2} + {z^2} - 2x + 4y - 6z - 11 = 0\) có VTCP \((P)\)
\(2x + 2y - z - 7 = 0\)cắt \((Q)\)
Chọn đáp án D.