Cho mặt cầu \(\left( S \right)\): \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\). Phương trình mặt cầu nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua mặt phẳng (Oxy):
A. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 9.\)
B. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 9.\)
C. \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 9.\)
D. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 9.\)
Lời giải của giáo viên
Mặt cầu \(\left( S \right)\) tâm \(I\left( {1;2;3} \right)\), bán kính \(R = 3\). Do mặt cầu \(\left( {S'} \right)\) đối xứng với \(\left( S \right)\) qua mặt phẳng (Oxy) nên tâm I' của \(\left( {S'} \right)\) đối xứng với I qua (Oxy), bán kính \(R' = R = 3\).
Ta có : \(I'\left( {1;2; - 3} \right)\). Vậy \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 9.\)
Lựa chọn đáp án D.
Lưu ý: Để ý thấy rằng trung điểm \(II'\) thuộc mặt phẳng \(\left( {Oxy} \right)\) và \(\overrightarrow {II'} \bot \left( {Oxy} \right)\). Cả 4 đáp án trên đều có thể dễ dàng tìm được tọa độ \(I'\) nên nếu tinh ý ta sẽ tiết kiệm được thời gian hơn trong việc tìm đáp án.
CÂU HỎI CÙNG CHỦ ĐỀ
Mặt cầu tiếp xúc với các cạnh của tứ diện đều \(ABCD\) cạnh \(a\) có bán kính là?
Cho măt cầu \(\left( S \right)\) tâm \(O\), có bán kính bằng \(r = 5{\rm{ cm}}\). Đường thẳng \(\Delta \) cắt mặt cầu \(\left( S \right)\) theo một dây cung\(AB = 6{\rm{ cm}}\). Khoảng cách từ \(O\) đến đường thẳng \(\Delta \) bằng
Mô đun của số phức z thỏa mãn \(\overline z = 8 - 6i\) là:
Cho số phức thỏa mãn điều kiện \(|z - 2 + 2i| = 1\). Tìm giá trị lớn nhất của \(|z|\).
Với a, b là các số dương. Giá trị biểu thức \({{{a^{{1 \over 3}}}\sqrt b + {b^{{1 \over 3}}}\sqrt a } \over {\root 6 \of a + \root 6 \of b }}\) là:
Mặt cầu \(\left( S \right)\) có thể tích \(36\pi {\rm{ c}}{{\rm{m}}^3}\). Diện tích của mặt cầu \(\left( S \right)\) bằng
Cho số phức z có điểm biểu diễn nằm trên đường thẳng 3x – 4y – 3 =0, \(|z|\) nhỏ nhất bằng:
Cho hàm số \(y = \dfrac{3 }{{x - 2}}\). Số tiệm cận của đồ thị hàm số bằng :
Cho \(c = {\log _{15}}3\). Khi đó giá trị của \({\log _{25}}15\) theo c là:
Tỉ số thể tích của khối trụ nội tiếp và khối trụ ngoại tiếp hình lập phương có cạnh bằng \(a\) bằng
Trong không gian với hệ toạ độ \(Oxyz\), gọi \(\left( \alpha \right)\)là mặt phẳng song song với mặt phẳng \(\left( \beta \right):2x - 4y + 4z + 3 = 0\) và cách điểm \(A\left( {2; - 3;4} \right)\) một khoảng \(k = 3\). Phương trình của mặt phẳng \(\left( \alpha \right)\) là:
Số phức \(z = \dfrac{{3 + 4i}}{{2 + 3i}} + \dfrac{{5 - 2i}}{{2 - 3i}}\) bằng:
Tìm b, c \( \in R\) để phương trình \(2{z^2} - bz + c = 0\) có hai nghiệm thuần ảo.