Lời giải của giáo viên
\(\begin{array}{l}z{\rm{ }} = {\rm{ }}2{\rm{ }} + {\rm{ }}3i\\ \Rightarrow 2iz - \overline z = {\rm{ }}2i\left( {2{\rm{ }} + 3i} \right){\rm{ }}--{\rm{ }}\left( {2{\rm{ }}--{\rm{ }}3i} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 4i - 6 - 2 + 3i\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - 8 + 7i\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos x + {e^x}} \right)\,dx} \).
Cho số phức z thỏa mãn sau \(|z - 2 - 2i| = 1\). Số phức z - i có mô đun nhỏ nhất là:
Nếu \(\int {f(x)\,dx = {e^x} + {{\sin }^2}x} + C\) thì f(x) bằng
Cho hàm số \(f(x) = {x^3} + a{x^2} + bx + c\). Mệnh đề nào sau đây sai ?
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA = a. Tính thể tích V của khối chóp đã cho.
Cho số phức z thỏa mãn \(|z + 3| + |z - 3| = 10\). Giá trị nhỏ nhất của \(|z|\) là:
Gọi M, N là giao điểm của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) và đường thẳng d: y = x + 2. Hoành độ trung điểm I của đoạn MN là
Hàm số \(y = \sqrt {{x^2} + 3x + 5} \). Tính y’(1) được :
Phương trình nào sau đây không phải là phương trình mặt cầu ?
Giả sử \(\int\limits_1^5 {\dfrac{{dx}}{{2x - 1}} = \ln K} \). Giá trị của K là:
Phương trình nào dưới đây là phương trình mặt cầu?