Cho số phức z thỏa mãn \(\left( {1--3i} \right)z\) là số thực và \(\left| {\bar z - 2 + 5i} \right| = 1\). Khi đó z là
A.
\(\left[ \begin{array}{l}
z = \frac{7}{5} - \frac{{21}}{5}i\\
z = 2 + 6i
\end{array} \right..\)
B.
\(\left[ \begin{array}{l}
z = \frac{7}{5} + \frac{{21}}{5}i\\
z = 2 + 6i
\end{array} \right..\)
C.
\(\left[ \begin{array}{l}
z = \frac{7}{5} + \frac{{21}}{5}i\\
z = - 2 + 6i
\end{array} \right..\)
D.
\(\left[ \begin{array}{l}
z = \frac{7}{5} - \frac{{21}}{5}i\\
z = - 2 + 6i
\end{array} \right..\)
Lời giải của giáo viên
Đặt \(z = x + iy{\rm{ }}\left( {x,y \in R} \right) \Rightarrow (1 - 3i)(x + iy) = x + 3y + (y - 3x)i \in R \Leftrightarrow y - 3x = 0\).
\(\left| {\bar z - 2 + 5i} \right| = 1 \Leftrightarrow \left| {x - iy - 2 + 5i} \right| = 1 \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y - 5} \right)^2} = 1\).
Ta được hệ \(\left\{ \begin{array}{l}
{\left( {x - 2} \right)^2} + {\left( {y - 5} \right)^2} = 1\\
y = 3x
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{\left( {x - 2} \right)^2} + {\left( {3x - 5} \right)^2} = 1\\
y = 3x
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 2\\
y = 6
\end{array} \right. \vee \left\{ \begin{array}{l}
x = \frac{7}{5}\\
y = \frac{{21}}{5}
\end{array} \right.\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong mặt phẳng Oxy, tập hợp điểm biểu diễn số phức z thỏa mãn \(\left| {z - 1} \right| = \left| {\left( {1 + i} \right)z} \right|\) là
Cho các số phức z, w thỏa mãn \(\left| {z + 2 - 2i} \right| = \left| {z - 4i} \right|,w = iz + 1\). Giá trị nhỏ nhất của \(\left| w \right|\) là
Trong số các số phức z thỏa mãn điều kiện \(\left| {z - 4 + 3i} \right| = 3,\) gọi \(z_0\) là số phức có mô đun lớn nhất. Khi đó \(\left| {{z_0}} \right|\) là:
Trên mặt phẳng phức, cho điểm A biểu diễn số phức \(3-2i\), điểm B biểu diễn số phức \(-1+6i\). Gọi M là trung điểm của AB. Khi đó điểm M biểu diễn số phức nào sau đây?
Cho số phức \(z=a+bi\) với \(a, b\) là hai số thực khác 0. Một phương trình bậc hai với hệ số thực nhận \(\bar z\) làm nghiệm với mọi \(a, b\) là:
Cho số phức z thỏa mãn \(3iz + 3 + 4i = 4z\). Tính môđun của số phức \(3z+4\)
Gọi \(z_1, z_2\) là hai nghiệm phức của phương trình: \({z^2} - z + 2 = 0\). Phần thực của số phức \({\left[ {\left( {i - {z_1}} \right)\left( {i - {z_2}} \right)} \right]^{2017}}\) là
Cho hai số phức \({z_1} = 1 - i\) và \({z_2} = 2 + 3i\). Tính môđun của số phức \({z_2} - i{z_1}\).
Tìm số phức liên hợp của số phức \(z = i\left( {3i + 1} \right)\).
Cho z là số phức thỏa mãn \(z + \frac{1}{z} = 1.\) Tính giá trị của \({z^{2017}} + \frac{1}{{{z^{2017}}}}.\)
Cho số phức z thỏa mãn: \(\left| {z - 2 - 2i} \right| = 1\). Số phức \(z-i\) có môđun nhỏ nhất là:
Với các số phức z thỏa mãn \(|z - 2 + i| = 4\), tập hợp các điểm biểu diễn các số phức z là một đường tròn. Tìm bán kính R đường tròn đó
Cho số phức z thỏa mãn \(\left| z \right| \le 1\). Đặt \(A = \frac{{2z - i}}{{2 + iz}}\). Mệnh đề nào sau đây đúng?
Cho số phức \(z = \frac{{ - 1}}{2} + \frac{{\sqrt 3 }}{2}i\). Số phức \(1 + z + {z^2}\) bằng
Tính môđun của số phức z thỏa mãn \(z\left( {2 - i} \right) + 13i = 1\).