Lời giải của giáo viên
\(\left| z \right| = \sqrt {{3^2} + {4^2}} = 5\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối nón có bán kính đáy bằng r, chiều cao h. Thể tích V của khối nón là:
Tập nghiệm của bất phương trình \({{\log }_{2}}x<3\) là
Trong không gian cho tam giác ABC vuông tại A có \(AB=\sqrt{3}\) và \(\widehat{ACB}={{30}^{\text{o}}}\). Tính thể tích V của khối nón nhận được khi quay tam giác ABC quanh cạnh AC.
Cho khối nón có đường sinh bằng 5 và bán kính đáy bằng 3. Thể tích khối nón bằng
Trong không gian Oxyz cho mặt phẳng \((P)\text{ }:x+y+z-2=0\). Điểm nào sau đây thuộc mặt phẳng (P)?
Tập nghiệm của bất phương trình \({\log ^2}x - 13\log x + 36 > 0\) là:
Trong mặt phẳng Oxy, cho các điểm A, B như hình vẽ bên. Trung điểm của đoạn thẳng AB biểu diễn số phức
Viết phương trình mặt phẳng qua \(M\left( 1;-1;2 \right),N\left( 3;1;4 \right)\) và song song với trục Ox
Gọi \({{z}_{1}}\) là nghiệm phức có phần ảo âm thỏa mãn: \({{z}^{2}}+6z+13=0\). Tìm phần ảo của số phức \(w={{\left( i+1 \right)}^{2}}{{z}_{1}}\).
Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh đường thẳng CD. Thể tích khối tròn xoay thu được là:
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên:
Khẳng định nào sau đây là khẳng định đúng:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
Trong không gian với hệ trục Oxyz, cho tam giác ABC có \(A\left( -1;3;2 \right), B\left( 2;0;5 \right)\) và \(C\left( 0;-2;1 \right)\). Phương trình trung tuyến AM của tam giác ABC là.
Giả sử a, b là các số thực sao cho \({{x}^{3}}+{{y}^{3}}=a{{.10}^{3z}}+b{{.10}^{2z}}\) đúng với mọi các số thực dương x, y, z thoả mãn \(\log \left( x+y \right)=z\) và \(\log \left( {{x}^{2}}+{{y}^{2}} \right)=z+1\). Giá trị của a+b bằng