Lời giải của giáo viên
Ta có \(z=a+bi\,\left( a,\,b\in \mathbb{R} \right)\).
+) \(\left| z-3 \right|=\left| z-1 \right|\Leftrightarrow \left| a-3+bi \right|=\left| a-1+bi \right| \Leftrightarrow \sqrt{{{\left( a-3 \right)}^{2}}+{{b}^{2}}}=\sqrt{{{\left( a-1 \right)}^{2}}+{{b}^{2}}} \Leftrightarrow {{\left( a-3 \right)}^{2}}+{{b}^{2}}={{\left( a-1 \right)}^{2}}+{{b}^{2}} \Leftrightarrow -4a+8=0 \Leftrightarrow a=2\).
+) \(\left( z+2 \right)\left( \overline{z}-i \right)=\left( a+bi+2 \right)\left( a-bi-i \right)=\left[ \left( a+2 \right)+bi \right]\left[ a-\left( b+1 \right)i \right]=a\left( a+2 \right)+b\left( b+1 \right)-\left( a+2b+2 \right)i\)
\(\left( z+2 \right)\left( \overline{z}-i \right)\) là số thực \(\Leftrightarrow a+2b+2=0\).
Thay a=2 tìm được b=-2. Vậy a+b=0.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng biến thiên:
Hàm số đã cho đồng biến trên khoảng:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\), bảng xét dấu của \({f}'\left( x \right)\) như sau:
Hàm số có bao nhiêu điểm cực tiểu
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 1;3;5 \right),\text{ }B\left( 2;0;1 \right),\text{ }C\left( 0;9;0 \right).\) Tìm trọng tâm G của tam giác ABC.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( 1;2;2 \right), B\left( 3;-2;0 \right)\). Một vectơ chỉ phương của đường thẳng AB là:
Cho tập hợp \(S=\left\{ 1;2;3;...;17 \right\}\) gồm 17 số nguyên dương đầu tiên. Chọn ngẫu nhiên một tập con có 3 phần tử của tập hợp S. Tính xác suất để tập hợp được chọn có tổng các phần tử chia hết cho 3.
Tập nghiệm S của bất phương trình \({5^{1 - 2{\rm{x}}}} > \frac{1}{{125}}\) là:
Với a và b là hai số thực dương tùy ý và \(a\ne 1,\text{ }{{\log }_{\sqrt{a}}}({{a}^{2}}b)\) bằng
Đồ thị hàm số \(y=-\frac{{{x}^{4}}}{2}+{{x}^{2}}+\frac{3}{2}\) cắt trục hoành tại mấy điểm?
Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{l}} {3{x^2}\,\,\,\,\,khi\,\,0 \le x \le 1}\\ {4 - x\,\,khi\,\,1 \le x \le 2\,\,} \end{array}} \right.\). Tính \(\int\limits_0^{{e^2} - 1} {\frac{{\ln \left( {x + 1} \right)}}{{x + 1}}dx} \)
Cho hình nón tròn xoay đỉnh \(S,\)đáy là đường tròn tâm \(O,\) bán kính đáy \(r = 5\). Một thiết diện qua đỉnh là tam giác \(SAB\) đều có cạnh bằng 8. Khoảng cách từ \(O\) đến mặt phẳng \(\left( {SAB} \right)\) bằng
Trong không gian Oxyz, đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{z}{3}\) đi qua điểm nào dưới đây
Trong không gian \(Oxyz\), phương trình đường thẳng đi qua điểm \(A\left( 1;2;0 \right)\) và vuông góc với mặt phẳng \(\left( P \right):2x+y-3z-5=0\) là
Tính thể tích của khối nón có chiều cao bằng 4 và độ dài đường sinh bằng 5.
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)\). Đồ thị của hàm số \(y={f}'\left( x \right)\) như hình vẽ.
Giá trị lớn nhất của hàm số \(g\left( x \right)=f\left( 3x \right)+9x\) trên đoạn \(\left[ -\frac{1}{3};\frac{1}{3} \right]\) là